Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,281 +1,285 @@
|
|
1 |
-
import os
|
2 |
-
import gradio as gr
|
3 |
-
import nltk
|
4 |
-
import numpy as np
|
5 |
-
import tflearn
|
6 |
-
import random
|
7 |
-
import json
|
8 |
-
import pickle
|
9 |
-
from nltk.tokenize import word_tokenize
|
10 |
-
from nltk.stem.lancaster import LancasterStemmer
|
11 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
-
import googlemaps
|
13 |
-
import folium
|
14 |
-
import torch
|
15 |
-
|
16 |
-
# Suppress TensorFlow warnings
|
17 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
18 |
-
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
19 |
-
|
20 |
-
# Download necessary NLTK resources
|
21 |
-
nltk.download("punkt")
|
22 |
-
stemmer = LancasterStemmer()
|
23 |
-
|
24 |
-
# Load intents and chatbot training data
|
25 |
-
with open("intents.json") as file:
|
26 |
-
intents_data = json.load(file)
|
27 |
-
|
28 |
-
with open("data.pickle", "rb") as f:
|
29 |
-
words, labels, training, output = pickle.load(f)
|
30 |
-
|
31 |
-
# Build the chatbot model
|
32 |
-
net = tflearn.input_data(shape=[None, len(training[0])])
|
33 |
-
net = tflearn.fully_connected(net, 8)
|
34 |
-
net = tflearn.fully_connected(net, 8)
|
35 |
-
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
|
36 |
-
net = tflearn.regression(net)
|
37 |
-
chatbot_model = tflearn.DNN(net)
|
38 |
-
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
39 |
-
|
40 |
-
# Hugging Face sentiment and emotion models
|
41 |
-
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
42 |
-
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
43 |
-
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
44 |
-
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
45 |
-
|
46 |
-
# Google Maps API Client
|
47 |
-
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
|
48 |
-
|
49 |
-
# Helper Functions
|
50 |
-
def bag_of_words(s, words):
|
51 |
-
"""Convert user input to bag-of-words vector."""
|
52 |
-
bag = [0] * len(words)
|
53 |
-
s_words = word_tokenize(s)
|
54 |
-
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
|
55 |
-
for se in s_words:
|
56 |
-
for i, w in enumerate(words):
|
57 |
-
if w == se:
|
58 |
-
bag[i] = 1
|
59 |
-
return np.array(bag)
|
60 |
-
|
61 |
-
def generate_chatbot_response(message, history):
|
62 |
-
"""Generate chatbot response and maintain conversation history."""
|
63 |
-
history = history or []
|
64 |
-
try:
|
65 |
-
result = chatbot_model.predict([bag_of_words(message, words)])
|
66 |
-
tag = labels[np.argmax(result)]
|
67 |
-
response = "I'm sorry, I didn't understand that. 🤔"
|
68 |
-
for intent in intents_data["intents"]:
|
69 |
-
if intent["tag"] == tag:
|
70 |
-
response = random.choice(intent["responses"])
|
71 |
-
break
|
72 |
-
except Exception as e:
|
73 |
-
response = f"Error: {e}"
|
74 |
-
history.append((message, response))
|
75 |
-
return history, response
|
76 |
-
|
77 |
-
def analyze_sentiment(user_input):
|
78 |
-
"""Analyze sentiment and map to emojis."""
|
79 |
-
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
80 |
-
with torch.no_grad():
|
81 |
-
outputs = model_sentiment(**inputs)
|
82 |
-
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
|
83 |
-
sentiment_map = ["Negative 😔", "Neutral 😐", "Positive 😊"]
|
84 |
-
return f"Sentiment: {sentiment_map[sentiment_class]}"
|
85 |
-
|
86 |
-
def detect_emotion(user_input):
|
87 |
-
"""Detect emotions based on input."""
|
88 |
-
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
89 |
-
result = pipe(user_input)
|
90 |
-
emotion = result[0]["label"].lower().strip()
|
91 |
-
emotion_map = {
|
92 |
-
"joy": "Joy 😊",
|
93 |
-
"anger": "Anger 😠",
|
94 |
-
"sadness": "Sadness 😢",
|
95 |
-
"fear": "Fear 😨",
|
96 |
-
"surprise": "Surprise 😲",
|
97 |
-
"neutral": "Neutral 😐",
|
98 |
-
}
|
99 |
-
return emotion_map.get(emotion, "Unknown 🤔"), emotion
|
100 |
-
|
101 |
-
def generate_suggestions(emotion):
|
102 |
-
"""Return relevant suggestions based on detected emotions."""
|
103 |
-
emotion_key = emotion.lower()
|
104 |
-
suggestions = {
|
105 |
-
"joy": [
|
106 |
-
["Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
|
107 |
-
["Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
108 |
-
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
109 |
-
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
|
110 |
-
],
|
111 |
-
"anger": [
|
112 |
-
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
113 |
-
["Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"],
|
114 |
-
["Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
115 |
-
["Relaxation Video", "https://youtu.be/MIc299Flibs"],
|
116 |
-
],
|
117 |
-
"fear": [
|
118 |
-
["Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
|
119 |
-
["Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
120 |
-
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
121 |
-
["Relaxation Video", "https://youtu.be/yGKKz185M5o"],
|
122 |
-
],
|
123 |
-
"sadness": [
|
124 |
-
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
125 |
-
["Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
126 |
-
["Relaxation Video", "https://youtu.be/-e-4Kx5px_I"],
|
127 |
-
],
|
128 |
-
"surprise": [
|
129 |
-
["Managing Stress", "https://www.health.harvard.edu/health-a-to-z"],
|
130 |
-
["Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
131 |
-
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
|
132 |
-
],
|
133 |
-
}
|
134 |
-
|
135 |
-
# Format the output to include HTML anchor tags
|
136 |
-
formatted_suggestions = [
|
137 |
-
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
|
138 |
-
]
|
139 |
-
|
140 |
-
return formatted_suggestions
|
141 |
-
|
142 |
-
def get_health_professionals_and_map(location, query):
|
143 |
-
"""Search nearby healthcare professionals using Google Maps API."""
|
144 |
-
try:
|
145 |
-
if not location or not query:
|
146 |
-
return [], "" # Return empty list if inputs are missing
|
147 |
-
|
148 |
-
geo_location = gmaps.geocode(location)
|
149 |
-
if geo_location:
|
150 |
-
lat, lng = geo_location[0]["geometry"]["location"].values()
|
151 |
-
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
|
152 |
-
professionals = []
|
153 |
-
map_ = folium.Map(location=(lat, lng), zoom_start=13)
|
154 |
-
for place in places_result:
|
155 |
-
# Use a list of values to append each professional
|
156 |
-
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
|
157 |
-
folium.Marker(
|
158 |
-
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
|
159 |
-
popup=f"{place['name']}"
|
160 |
-
).add_to(map_)
|
161 |
-
return professionals, map_._repr_html_()
|
162 |
-
|
163 |
-
return [], "" # Return empty list if no professionals found
|
164 |
-
except Exception as e:
|
165 |
-
return [], "" # Return empty list on exception
|
166 |
-
|
167 |
-
# Main Application Logic
|
168 |
-
def app_function(user_input, location, query, history):
|
169 |
-
chatbot_history, _ = generate_chatbot_response(user_input, history)
|
170 |
-
sentiment_result = analyze_sentiment(user_input)
|
171 |
-
emotion_result, cleaned_emotion = detect_emotion(user_input)
|
172 |
-
suggestions = generate_suggestions(cleaned_emotion)
|
173 |
-
professionals, map_html = get_health_professionals_and_map(location, query)
|
174 |
-
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html
|
175 |
-
|
176 |
-
# CSS Styling
|
177 |
-
custom_css = """
|
178 |
-
body {
|
179 |
-
font-family: 'Roboto', sans-serif;
|
180 |
-
background-color: #3c6487; /* Set the background color */
|
181 |
-
color: white;
|
182 |
-
}
|
183 |
-
|
184 |
-
h1 {
|
185 |
-
background: #ffffff;
|
186 |
-
color: #000000;
|
187 |
-
border-radius: 8px;
|
188 |
-
padding: 10px;
|
189 |
-
font-weight: bold;
|
190 |
-
text-align: center;
|
191 |
-
font-size: 2.5rem;
|
192 |
-
}
|
193 |
-
|
194 |
-
textarea, input {
|
195 |
-
background: transparent;
|
196 |
-
color: black;
|
197 |
-
border: 2px solid orange;
|
198 |
-
padding: 8px;
|
199 |
-
font-size: 1rem;
|
200 |
-
caret-color: black;
|
201 |
-
outline: none;
|
202 |
-
border-radius: 8px;
|
203 |
-
}
|
204 |
-
|
205 |
-
textarea:focus, input:focus {
|
206 |
-
background: transparent;
|
207 |
-
color: black;
|
208 |
-
border: 2px solid orange;
|
209 |
-
outline: none;
|
210 |
-
}
|
211 |
-
|
212 |
-
textarea:hover, input:hover {
|
213 |
-
background: transparent;
|
214 |
-
color: black;
|
215 |
-
border: 2px solid orange;
|
216 |
-
}
|
217 |
-
|
218 |
-
.df-container {
|
219 |
-
background: white;
|
220 |
-
color: black;
|
221 |
-
border: 2px solid orange;
|
222 |
-
border-radius: 10px;
|
223 |
-
padding: 10px;
|
224 |
-
font-size: 14px;
|
225 |
-
max-height: 400px;
|
226 |
-
height: auto;
|
227 |
-
overflow-y: auto;
|
228 |
-
}
|
229 |
-
|
230 |
-
#suggestions-title {
|
231 |
-
text-align: center !important; /* Ensure the centering is applied */
|
232 |
-
font-weight: bold !important; /* Ensure bold is applied */
|
233 |
-
color: white !important; /* Ensure color is applied */
|
234 |
-
font-size: 4.2rem !important; /* Ensure font size is applied */
|
235 |
-
margin-bottom: 20px !important; /* Ensure margin is applied */
|
236 |
-
}
|
237 |
-
|
238 |
-
/* Style for the submit button */
|
239 |
-
.gr-button {
|
240 |
-
background-color: #ae1c93; /* Set the background color to #ae1c93 */
|
241 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.06);
|
242 |
-
transition: background-color 0.3s ease;
|
243 |
-
}
|
244 |
-
|
245 |
-
.gr-button:hover {
|
246 |
-
background-color: #8f167b;
|
247 |
-
}
|
248 |
-
|
249 |
-
.gr-button:active {
|
250 |
-
background-color: #7f156b;
|
251 |
-
}
|
252 |
-
"""
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
gr.
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
gr.
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
281 |
app.launch()
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import nltk
|
4 |
+
import numpy as np
|
5 |
+
import tflearn
|
6 |
+
import random
|
7 |
+
import json
|
8 |
+
import pickle
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
+
from nltk.stem.lancaster import LancasterStemmer
|
11 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
+
import googlemaps
|
13 |
+
import folium
|
14 |
+
import torch
|
15 |
+
|
16 |
+
# Suppress TensorFlow warnings
|
17 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
18 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
19 |
+
|
20 |
+
# Download necessary NLTK resources
|
21 |
+
nltk.download("punkt")
|
22 |
+
stemmer = LancasterStemmer()
|
23 |
+
|
24 |
+
# Load intents and chatbot training data
|
25 |
+
with open("intents.json") as file:
|
26 |
+
intents_data = json.load(file)
|
27 |
+
|
28 |
+
with open("data.pickle", "rb") as f:
|
29 |
+
words, labels, training, output = pickle.load(f)
|
30 |
+
|
31 |
+
# Build the chatbot model
|
32 |
+
net = tflearn.input_data(shape=[None, len(training[0])])
|
33 |
+
net = tflearn.fully_connected(net, 8)
|
34 |
+
net = tflearn.fully_connected(net, 8)
|
35 |
+
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
|
36 |
+
net = tflearn.regression(net)
|
37 |
+
chatbot_model = tflearn.DNN(net)
|
38 |
+
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
39 |
+
|
40 |
+
# Hugging Face sentiment and emotion models
|
41 |
+
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
42 |
+
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
43 |
+
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
44 |
+
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
45 |
+
|
46 |
+
# Google Maps API Client
|
47 |
+
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
|
48 |
+
|
49 |
+
# Helper Functions
|
50 |
+
def bag_of_words(s, words):
|
51 |
+
"""Convert user input to bag-of-words vector."""
|
52 |
+
bag = [0] * len(words)
|
53 |
+
s_words = word_tokenize(s)
|
54 |
+
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
|
55 |
+
for se in s_words:
|
56 |
+
for i, w in enumerate(words):
|
57 |
+
if w == se:
|
58 |
+
bag[i] = 1
|
59 |
+
return np.array(bag)
|
60 |
+
|
61 |
+
def generate_chatbot_response(message, history):
|
62 |
+
"""Generate chatbot response and maintain conversation history."""
|
63 |
+
history = history or []
|
64 |
+
try:
|
65 |
+
result = chatbot_model.predict([bag_of_words(message, words)])
|
66 |
+
tag = labels[np.argmax(result)]
|
67 |
+
response = "I'm sorry, I didn't understand that. 🤔"
|
68 |
+
for intent in intents_data["intents"]:
|
69 |
+
if intent["tag"] == tag:
|
70 |
+
response = random.choice(intent["responses"])
|
71 |
+
break
|
72 |
+
except Exception as e:
|
73 |
+
response = f"Error: {e}"
|
74 |
+
history.append((message, response))
|
75 |
+
return history, response
|
76 |
+
|
77 |
+
def analyze_sentiment(user_input):
|
78 |
+
"""Analyze sentiment and map to emojis."""
|
79 |
+
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
80 |
+
with torch.no_grad():
|
81 |
+
outputs = model_sentiment(**inputs)
|
82 |
+
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
|
83 |
+
sentiment_map = ["Negative 😔", "Neutral 😐", "Positive 😊"]
|
84 |
+
return f"Sentiment: {sentiment_map[sentiment_class]}"
|
85 |
+
|
86 |
+
def detect_emotion(user_input):
|
87 |
+
"""Detect emotions based on input."""
|
88 |
+
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
89 |
+
result = pipe(user_input)
|
90 |
+
emotion = result[0]["label"].lower().strip()
|
91 |
+
emotion_map = {
|
92 |
+
"joy": "Joy 😊",
|
93 |
+
"anger": "Anger 😠",
|
94 |
+
"sadness": "Sadness 😢",
|
95 |
+
"fear": "Fear 😨",
|
96 |
+
"surprise": "Surprise 😲",
|
97 |
+
"neutral": "Neutral 😐",
|
98 |
+
}
|
99 |
+
return emotion_map.get(emotion, "Unknown 🤔"), emotion
|
100 |
+
|
101 |
+
def generate_suggestions(emotion):
|
102 |
+
"""Return relevant suggestions based on detected emotions."""
|
103 |
+
emotion_key = emotion.lower()
|
104 |
+
suggestions = {
|
105 |
+
"joy": [
|
106 |
+
["Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
|
107 |
+
["Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
108 |
+
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
109 |
+
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
|
110 |
+
],
|
111 |
+
"anger": [
|
112 |
+
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
113 |
+
["Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"],
|
114 |
+
["Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
115 |
+
["Relaxation Video", "https://youtu.be/MIc299Flibs"],
|
116 |
+
],
|
117 |
+
"fear": [
|
118 |
+
["Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
|
119 |
+
["Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
120 |
+
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
121 |
+
["Relaxation Video", "https://youtu.be/yGKKz185M5o"],
|
122 |
+
],
|
123 |
+
"sadness": [
|
124 |
+
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
125 |
+
["Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
126 |
+
["Relaxation Video", "https://youtu.be/-e-4Kx5px_I"],
|
127 |
+
],
|
128 |
+
"surprise": [
|
129 |
+
["Managing Stress", "https://www.health.harvard.edu/health-a-to-z"],
|
130 |
+
["Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
131 |
+
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
|
132 |
+
],
|
133 |
+
}
|
134 |
+
|
135 |
+
# Format the output to include HTML anchor tags
|
136 |
+
formatted_suggestions = [
|
137 |
+
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
|
138 |
+
]
|
139 |
+
|
140 |
+
return formatted_suggestions
|
141 |
+
|
142 |
+
def get_health_professionals_and_map(location, query):
|
143 |
+
"""Search nearby healthcare professionals using Google Maps API."""
|
144 |
+
try:
|
145 |
+
if not location or not query:
|
146 |
+
return [], "" # Return empty list if inputs are missing
|
147 |
+
|
148 |
+
geo_location = gmaps.geocode(location)
|
149 |
+
if geo_location:
|
150 |
+
lat, lng = geo_location[0]["geometry"]["location"].values()
|
151 |
+
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
|
152 |
+
professionals = []
|
153 |
+
map_ = folium.Map(location=(lat, lng), zoom_start=13)
|
154 |
+
for place in places_result:
|
155 |
+
# Use a list of values to append each professional
|
156 |
+
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
|
157 |
+
folium.Marker(
|
158 |
+
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
|
159 |
+
popup=f"{place['name']}"
|
160 |
+
).add_to(map_)
|
161 |
+
return professionals, map_._repr_html_()
|
162 |
+
|
163 |
+
return [], "" # Return empty list if no professionals found
|
164 |
+
except Exception as e:
|
165 |
+
return [], "" # Return empty list on exception
|
166 |
+
|
167 |
+
# Main Application Logic
|
168 |
+
def app_function(user_input, location, query, history):
|
169 |
+
chatbot_history, _ = generate_chatbot_response(user_input, history)
|
170 |
+
sentiment_result = analyze_sentiment(user_input)
|
171 |
+
emotion_result, cleaned_emotion = detect_emotion(user_input)
|
172 |
+
suggestions = generate_suggestions(cleaned_emotion)
|
173 |
+
professionals, map_html = get_health_professionals_and_map(location, query)
|
174 |
+
return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html
|
175 |
+
|
176 |
+
# CSS Styling
|
177 |
+
custom_css = """
|
178 |
+
body {
|
179 |
+
font-family: 'Roboto', sans-serif;
|
180 |
+
background-color: #3c6487; /* Set the background color */
|
181 |
+
color: white;
|
182 |
+
}
|
183 |
+
|
184 |
+
h1 {
|
185 |
+
background: #ffffff;
|
186 |
+
color: #000000;
|
187 |
+
border-radius: 8px;
|
188 |
+
padding: 10px;
|
189 |
+
font-weight: bold;
|
190 |
+
text-align: center;
|
191 |
+
font-size: 2.5rem;
|
192 |
+
}
|
193 |
+
|
194 |
+
textarea, input {
|
195 |
+
background: transparent;
|
196 |
+
color: black;
|
197 |
+
border: 2px solid orange;
|
198 |
+
padding: 8px;
|
199 |
+
font-size: 1rem;
|
200 |
+
caret-color: black;
|
201 |
+
outline: none;
|
202 |
+
border-radius: 8px;
|
203 |
+
}
|
204 |
+
|
205 |
+
textarea:focus, input:focus {
|
206 |
+
background: transparent;
|
207 |
+
color: black;
|
208 |
+
border: 2px solid orange;
|
209 |
+
outline: none;
|
210 |
+
}
|
211 |
+
|
212 |
+
textarea:hover, input:hover {
|
213 |
+
background: transparent;
|
214 |
+
color: black;
|
215 |
+
border: 2px solid orange;
|
216 |
+
}
|
217 |
+
|
218 |
+
.df-container {
|
219 |
+
background: white;
|
220 |
+
color: black;
|
221 |
+
border: 2px solid orange;
|
222 |
+
border-radius: 10px;
|
223 |
+
padding: 10px;
|
224 |
+
font-size: 14px;
|
225 |
+
max-height: 400px;
|
226 |
+
height: auto;
|
227 |
+
overflow-y: auto;
|
228 |
+
}
|
229 |
+
|
230 |
+
#suggestions-title {
|
231 |
+
text-align: center !important; /* Ensure the centering is applied */
|
232 |
+
font-weight: bold !important; /* Ensure bold is applied */
|
233 |
+
color: white !important; /* Ensure color is applied */
|
234 |
+
font-size: 4.2rem !important; /* Ensure font size is applied */
|
235 |
+
margin-bottom: 20px !important; /* Ensure margin is applied */
|
236 |
+
}
|
237 |
+
|
238 |
+
/* Style for the submit button */
|
239 |
+
.gr-button {
|
240 |
+
background-color: #ae1c93; /* Set the background color to #ae1c93 */
|
241 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.06);
|
242 |
+
transition: background-color 0.3s ease;
|
243 |
+
}
|
244 |
+
|
245 |
+
.gr-button:hover {
|
246 |
+
background-color: #8f167b;
|
247 |
+
}
|
248 |
+
|
249 |
+
.gr-button:active {
|
250 |
+
background-color: #7f156b;
|
251 |
+
}
|
252 |
+
"""
|
253 |
+
# Gradio Application
|
254 |
+
with gr.Blocks(css=custom_css) as app:
|
255 |
+
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
|
256 |
+
with gr.Row():
|
257 |
+
user_input = gr.Textbox(label="Please Enter Your Message Here")
|
258 |
+
location = gr.Textbox(label="Please Enter Your Current Location Here")
|
259 |
+
query = gr.Textbox(label="Please Enter Which Health Professional You Want To Search Nearby")
|
260 |
+
|
261 |
+
# New Predict Disease Button
|
262 |
+
predict_disease = gr.Button(value="Predict Disease", variant="secondary")
|
263 |
+
predict_disease.click(lambda: None, _js="window.open('https://huggingface.co/spaces/Mishal23/wellBeing', '_blank')")
|
264 |
+
|
265 |
+
# Existing Submit Button
|
266 |
+
submit = gr.Button(value="Submit", variant="primary")
|
267 |
+
|
268 |
+
chatbot = gr.Chatbot(label="Chat History")
|
269 |
+
sentiment = gr.Textbox(label="Detected Sentiment")
|
270 |
+
emotion = gr.Textbox(label="Detected Emotion")
|
271 |
+
|
272 |
+
# Adding Suggestions Title with Styled Markdown (Centered and Bold)
|
273 |
+
gr.Markdown("Suggestions", elem_id="suggestions-title")
|
274 |
+
|
275 |
+
suggestions = gr.DataFrame(headers=["Title", "Link"]) # Table for suggestions
|
276 |
+
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"]) # Changed to DataFrame
|
277 |
+
map_html = gr.HTML(label="Interactive Map")
|
278 |
+
|
279 |
+
submit.click(
|
280 |
+
app_function,
|
281 |
+
inputs=[user_input, location, query, chatbot],
|
282 |
+
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html],
|
283 |
+
)
|
284 |
+
|
285 |
app.launch()
|