Mishmosh's picture
Update app.py
6c21fa3
raw
history blame
15.4 kB
# https://huggingface.co/spaces/Mishmosh/MichelleAssessment3
# I was having great difficulty getting any code to run without errors. Finally when it was working I ran out of time to complete the task
# The code receives a PDF but doesnt' appear to process it.
# I still need to add the gradio interface output to show the summarized text and play the sound file
import gradio as gr
# Interface for displaying the summarized text
summarized_textbox = gr.Textbox(type="text", label="Summarized Text")
# Interface for playing the speech
speech_audio = gr.Audio(type="file", label="Text-to-Speech Audio", element_id="audio_element")
# Interface to process input and display results
iface = gr.Interface(
fn=process_input,
inputs=[
gr.File(
type="binary",
label="Hello. This app is called Abstract Summariser and gives a one sentence summary of the input PDF in both written and spoken form. Please upload a PDF file that contains an abstract.",
),
],
outputs=[summarized_textbox, speech_audio], # Display the summarized text and audio
)
def process_input(pdf_file):
print("Received PDF File:", pdf_file.name)
# Read the content of the uploaded PDF file
pdf_content = pdf_file.read()
# Save the received PDF content locally
with open("received_pdf.pdf", "wb") as output_file:
output_file.write(pdf_content)
# Return the content of the processed PDF file
return pdf_content
###commented out latest version
#iface = gr.Interface(
# fn=process_input,
# inputs=[
# gr.File(
# type="binary",
# label="Hello. This app is called Abstract Summariser and gives a one sentence summary of the input PDF in both written and spoken form. Please upload a PDF file that contains an abstract.",
# ),
# ],
# outputs=None,
#)
iface.launch(share=True)
#iface.launch()
#python app.py
#python -m pip install --upgrade pip
#pip install torch torchvision torchaudio tensorflow
# Install Rust
#RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
#RUN python -m pip install --upgrade pip
#pip install --upgrade pip
#RUN pip install --no-cache-dir -r requirements.txt
#RUN pip install --use-feature=in-tree-build tokenizers
#!pip install PyPDF2
#!pip install sentencepiece
#!pip install pdfminer.six
#!pip install pdfplumber
#!pip install pdf2image
#!pip install Pillow
#!pip install pytesseract
# @title
#!apt-get install poppler-utils
#!apt install tesseract-ocr
#!apt install libtesseract-dev
import PyPDF2
from pdfminer.high_level import extract_pages, extract_text
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
import pdfplumber
from PIL import Image
from pdf2image import convert_from_path
import pytesseract
import os
#pdf_path="received_pdf.pdf"
pdf_path=pdf_content
def text_extraction(element):
# Extracting the text from the in-line text element
line_text = element.get_text()
# Find the formats of the text
# Initialize the list with all the formats that appeared in the line of text
line_formats = []
for text_line in element:
if isinstance(text_line, LTTextContainer):
# Iterating through each character in the line of text
for character in text_line:
if isinstance(character, LTChar):
# Append the font name of the character
line_formats.append(character.fontname)
# Append the font size of the character
line_formats.append(character.size)
# Find the unique font sizes and names in the line
format_per_line = list(set(line_formats))
# Return a tuple with the text in each line along with its format
return (line_text, format_per_line)
# @title
# Create a function to crop the image elements from PDFs
def crop_image(element, pageObj):
# Get the coordinates to crop the image from the PDF
[image_left, image_top, image_right, image_bottom] = [element.x0,element.y0,element.x1,element.y1]
# Crop the page using coordinates (left, bottom, right, top)
pageObj.mediabox.lower_left = (image_left, image_bottom)
pageObj.mediabox.upper_right = (image_right, image_top)
# Save the cropped page to a new PDF
cropped_pdf_writer = PyPDF2.PdfWriter()
cropped_pdf_writer.add_page(pageObj)
# Save the cropped PDF to a new file
with open('cropped_image.pdf', 'wb') as cropped_pdf_file:
cropped_pdf_writer.write(cropped_pdf_file)
# Create a function to convert the PDF to images
def convert_to_images(input_file,):
images = convert_from_path(input_file)
image = images[0]
output_file = "PDF_image.png"
image.save(output_file, "PNG")
# Create a function to read text from images
def image_to_text(image_path):
# Read the image
img = Image.open(image_path)
# Extract the text from the image
text = pytesseract.image_to_string(img)
return text
# @title
# Extracting tables from the page
def extract_table(pdf_path, page_num, table_num):
# Open the pdf file
# pdf = received_pdf.pdf
pdf = pdf_path
# Find the examined page
table_page = pdf.pages[page_num]
# Extract the appropriate table
table = table_page.extract_tables()[table_num]
return table
# Convert table into the appropriate format
def table_converter(table):
table_string = ''
# Iterate through each row of the table
for row_num in range(len(table)):
row = table[row_num]
# Remove the line breaker from the wrapped texts
cleaned_row = [item.replace('\n', ' ') if item is not None and '\n' in item else 'None' if item is None else item for item in row]
# Convert the table into a string
table_string+=('|'+'|'.join(cleaned_row)+'|'+'\n')
# Removing the last line break
table_string = table_string[:-1]
return table_string
# @title
def read_pdf(pdf_path):
# create a PDF file object
pdfFileObj = open(pdf_path, 'rb')
# create a PDF reader object
#pdfReaded = PyPDF2.PdfReader(pdfFileObj) #coded out as suggested by chatgpt
pdfReaded = PyPDF2.PdfFileReader(pdfFileObj)
# Create the dictionary to extract text from each image
text_per_page = {}
# We extract the pages from the PDF
for pagenum, page in enumerate(extract_pages(pdf_path)):
print("Elaborating Page_" +str(pagenum))
# Initialize the variables needed for the text extraction from the page
pageObj = pdfReaded.pages[pagenum]
page_text = []
line_format = []
text_from_images = []
text_from_tables = []
page_content = []
# Initialize the number of the examined tables
table_num = 0
first_element= True
table_extraction_flag= False
# Open the pdf file
pdf = pdfplumber.open(pdf_path)
# Find the examined page
page_tables = pdf.pages[pagenum]
# Find the number of tables on the page
tables = page_tables.find_tables()
# Find all the elements
page_elements = [(element.y1, element) for element in page._objs]
# Sort all the elements as they appear in the page
page_elements.sort(key=lambda a: a[0], reverse=True)
# Find the elements that composed a page
for i,component in enumerate(page_elements):
# Extract the position of the top side of the element in the PDF
pos= component[0]
# Extract the element of the page layout
element = component[1]
# Check if the element is a text element
if isinstance(element, LTTextContainer):
# Check if the text appeared in a table
if table_extraction_flag == False:
# Use the function to extract the text and format for each text element
(line_text, format_per_line) = text_extraction(element)
# Append the text of each line to the page text
page_text.append(line_text)
# Append the format for each line containing text
line_format.append(format_per_line)
page_content.append(line_text)
else:
# Omit the text that appeared in a table
pass
# Check the elements for images
if isinstance(element, LTFigure):
# Crop the image from the PDF
crop_image(element, pageObj)
# Convert the cropped pdf to an image
convert_to_images('cropped_image.pdf')
# Extract the text from the image
image_text = image_to_text('PDF_image.png')
text_from_images.append(image_text)
page_content.append(image_text)
# Add a placeholder in the text and format lists
page_text.append('image')
line_format.append('image')
# Check the elements for tables
if isinstance(element, LTRect):
# If the first rectangular element
if first_element == True and (table_num+1) <= len(tables):
# Find the bounding box of the table
lower_side = page.bbox[3] - tables[table_num].bbox[3]
upper_side = element.y1
# Extract the information from the table
table = extract_table(pdf_path, pagenum, table_num)
# Convert the table information in structured string format
table_string = table_converter(table)
# Append the table string into a list
text_from_tables.append(table_string)
page_content.append(table_string)
# Set the flag as True to avoid the content again
table_extraction_flag = True
# Make it another element
first_element = False
# Add a placeholder in the text and format lists
page_text.append('table')
line_format.append('table')
# Check if we already extracted the tables from the page
if element.y0 >= lower_side and element.y1 <= upper_side:
pass
elif not isinstance(page_elements[i+1][1], LTRect):
table_extraction_flag = False
first_element = True
table_num+=1
# Create the key of the dictionary
dctkey = 'Page_'+str(pagenum)
# Add the list of list as the value of the page key
text_per_page[dctkey]= [page_text, line_format, text_from_images,text_from_tables, page_content]
# Closing the pdf file object
pdfFileObj.close()
# Deleting the additional files created
#os.remove('cropped_image.pdf')
#os.remove('PDF_image.png')
return text_per_page
#google drive
#from google.colab import drive
#drive.mount('/content/drive')
#read PDF
#pdf_path = 'test.pdf' #article 11
#pdf_path = 'https://huggingface.co/spaces/Mishmosh/MichelleAssessment3/blob/main/test.pdf' #article 11
#text_per_page = read_pdf(received_pdf.pdf)
text_per_page = read_pdf(pdf_content)
# This section finds the abstract. My plan was to find the end of the abstract by identifying the same font size as the text 'abstract', but it was too late
#to try this here since the formatting of the text has already been removed.
# Instead I extracted just one paragraph. If an abstract is more than 1 paragraph this will not extract the entire abstract
abstract_from_pdf='' # define empty variable that will hold the text from the abstract
found_abstract=False # has the abstract been found
for key in text_per_page.keys(): # go through keys in dictionary
current_item=text_per_page[key] #current key
for paragraphs in current_item: #go through each item
for index,paragraph in enumerate(paragraphs): #go through each line
if 'Abstract\n' == paragraph: #does line match paragraph
found_abstract=True #word abstract has been found
abstract_from_pdf=paragraphs[index+1] #get next paragraph
if found_abstract: #if abstract found
break
print(abstract_from_pdf)
from transformers import pipeline
summarizer = pipeline("summarization", model="ainize/bart-base-cnn")
#summarizer = pipeline("summarization", model="linydub/bart-large-samsum") # various models were tried and the best one was selected
#summarizer = pipeline("summarization", model="slauw87/bart_summarisation")
#summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
#summarizer = pipeline("summarization", model="google/pegasus-cnn_dailymail")
#print(summarizer(abstract_from_pdf, max_length=50, min_length=5, do_sample=False))
summarized_text=(summarizer(abstract_from_pdf))
print(summarized_text)
#summary_of_abstract=str(summarizer)
#type(summary_of_abstract)
#print(summary_of_abstract)
# the aim of this section of code is to get a summary of just one sentence by summarizing the summary all while the summary is longer than one sentence.
# unfortunately, I tried many many models and none of them actually summarize the text to as short as one sentence.
#I had searched for ways to fine tune the summarization model to specify that the summarization should be done in just one sentence but did not find a way to implement it
#from transformers import pipeline
#summarized_text_list_list=summarized_text_list['summary_text']
#summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
#print(summarizer)
#number_of_sentences=summarized_text_list_list.count('.')
#print(number_of_sentences)
#while(number_of_sentences)>1:
# print(number_of_sentences)
# summarized_text_list_list=summarizer(summarized_text_list_list)[0]['summary_text']
# number_of_sentences-=1
#print(summarized_text_list_list)
#print(number_of_sentences)
#text to speech
#!pip install git+https://github.com/huggingface/transformers.git
#!pip install datasets sentencepiece
import torch
#import soundfile as sf
#from IPython.display import Audio
from datasets import load_dataset
from transformers import pipeline
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
#text = "The future belongs to those who believe in the beauty of their dreams."
#text = (summarized_text_list_list)
text = (summarized_text)
#inputs = processor(text=summarized_text_list_list, return_tensors="pt")
#inputs = processor("Michelletest", return_tensors="pt")
inputs = processor(text, return_tensors="pt")
from datasets import load_dataset
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
import torch
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
from transformers import SpeechT5HifiGan
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
with torch.no_grad():
speech = vocoder(spectrogram)
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
Audio(speech, rate=16000)
#new code
summarized_text = summarize_abstract(abstract_from_pdf)
# Set the value of the summarized_textbox
summarized_textbox.value = summarized_text
speech_audio.file = audio_path