Mishmosh commited on
Commit
07f654f
·
1 Parent(s): 87eb59b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -30
app.py CHANGED
@@ -277,33 +277,3 @@ print(summarized_text)
277
  #print(number_of_sentences)
278
 
279
 
280
- #text to speech
281
- #!pip install git+https://github.com/huggingface/transformers.git
282
- #!pip install datasets sentencepiece
283
- import torch
284
- import soundfile as sf
285
- from IPython.display import Audio
286
- from datasets import load_dataset
287
- from transformers import pipeline
288
- from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
289
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
290
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
291
- text = "The future belongs to those who believe in the beauty of their dreams."
292
- #text = (summarized_text_list_list)
293
-
294
- #inputs = processor(text=summarized_text_list_list, return_tensors="pt")
295
- inputs = processor(text, return_tensors="pt")
296
- from datasets import load_dataset
297
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
298
-
299
- import torch
300
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
301
- spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
302
- from transformers import SpeechT5HifiGan
303
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
304
- with torch.no_grad():
305
- speech = vocoder(spectrogram)
306
- speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
307
- Audio(speech, rate=16000)
308
-
309
-
 
277
  #print(number_of_sentences)
278
 
279