Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PyPDF2 import PdfFileReader
|
3 |
+
from transformers import pipeline
|
4 |
+
|
5 |
+
# Function to extract text from PDF
|
6 |
+
def extract_text_from_pdf(pdf_path):
|
7 |
+
with open(pdf_path, 'rb') as file:
|
8 |
+
pdf_reader = PdfFileReader(file)
|
9 |
+
text = ""
|
10 |
+
for page_num in range(pdf_reader.numPages):
|
11 |
+
page = pdf_reader.getPage(page_num)
|
12 |
+
text += page.extractText()
|
13 |
+
return text
|
14 |
+
|
15 |
+
# Function to extract the abstract from the text
|
16 |
+
def extract_abstract(text):
|
17 |
+
abstract = ""
|
18 |
+
found_abstract = False
|
19 |
+
paragraphs = text.split('\n')
|
20 |
+
for index, paragraph in enumerate(paragraphs):
|
21 |
+
if 'Abstract' in paragraph:
|
22 |
+
found_abstract = True
|
23 |
+
abstract = paragraphs[index + 1] # Get the next paragraph as the abstract
|
24 |
+
return abstract if found_abstract else "Abstract not found"
|
25 |
+
|
26 |
+
# Function to summarize text
|
27 |
+
def summarize_text(text):
|
28 |
+
summarizer = pipeline("summarization", model="ainize/bart-base-cnn")
|
29 |
+
summarized_text = summarizer(text, max_length=50, min_length=5, do_sample=False)[0]['summary_text']
|
30 |
+
return summarized_text
|
31 |
+
|
32 |
+
# Function to convert text to speech
|
33 |
+
def text_to_speech(text):
|
34 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
|
35 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
36 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
37 |
+
inputs = processor(text, return_tensors="pt")
|
38 |
+
speech = model.generate_speech(inputs["input_ids"])
|
39 |
+
return speech.numpy().tobytes(), 16000 # Return audio data and sample rate
|
40 |
+
|
41 |
+
# Gradio interface
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=lambda pdf_file: text_to_speech(summarize_text(extract_abstract(extract_text_from_pdf(pdf_file.name)))),
|
44 |
+
inputs=gr.File(label="Upload PDF", type="file"),
|
45 |
+
outputs="audio",
|
46 |
+
live=True,
|
47 |
+
title="PDF Abstract Summarizer with Text-to-Speech",
|
48 |
+
description="Upload a PDF, and I will extract the abstract, summarize it, and convert it to speech."
|
49 |
+
)
|
50 |
+
|
51 |
+
# Launch the interface
|
52 |
+
iface.launch()
|