Spaces:
Sleeping
Sleeping
File size: 1,561 Bytes
002fc39 98ce06e 002fc39 98ce06e 002fc39 98ce06e 002fc39 98ce06e 002fc39 98ce06e 002fc39 98ce06e 002fc39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import os
import urllib.request
import gradio as gr
from llama_cpp import Llama
def download_file(file_link, filename):
# Checks if the file already exists before downloading
if not os.path.isfile(filename):
urllib.request.urlretrieve(file_link, filename)
print("File downloaded successfully.")
else:
print("File already exists.")
# Dowloading GGML model from HuggingFace
ggml_model_path = "https://huggingface.co/CRD716/ggml-vicuna-1.1-quantized/resolve/main/ggml-vicuna-7b-1.1-q4_1.bin"
filename = "ggml-vicuna-7b-1.1-q4_1.bin"
download_file(ggml_model_path, filename)
llm = Llama(model_path=filename, n_ctx=512, n_batch=126)
def generate_text(prompt="Who is the CEO of Apple?"):
output = llm(
prompt,
max_tokens=256,
temperature=0.1,
top_p=0.5,
echo=False,
stop=["#"],
)
output_text = output["choices"][0]["text"].strip()
# Remove Prompt Echo from Generated Text
cleaned_output_text = output_text.replace(prompt, "")
return cleaned_output_text
description = "Vicuna-7B"
examples = [
["What is the capital of France?", "The capital of France is Paris."],
[
"Who wrote the novel 'Pride and Prejudice'?",
"The novel 'Pride and Prejudice' was written by Jane Austen.",
],
["What is the square root of 64?", "The square root of 64 is 8."],
]
gradio_interface = gr.Interface(
fn=generate_text,
inputs="text",
outputs="text",
examples=examples,
title="Vicuna-7B",
)
gradio_interface.launch() |