File size: 1,561 Bytes
002fc39
 
98ce06e
002fc39
98ce06e
 
002fc39
 
 
 
 
 
 
98ce06e
 
002fc39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98ce06e
 
002fc39
98ce06e
 
 
002fc39
 
 
 
 
 
 
98ce06e
002fc39
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
import urllib.request
import gradio as gr
from llama_cpp import Llama


def download_file(file_link, filename):
    # Checks if the file already exists before downloading
    if not os.path.isfile(filename):
        urllib.request.urlretrieve(file_link, filename)
        print("File downloaded successfully.")
    else:
        print("File already exists.")


# Dowloading GGML model from HuggingFace
ggml_model_path = "https://huggingface.co/CRD716/ggml-vicuna-1.1-quantized/resolve/main/ggml-vicuna-7b-1.1-q4_1.bin"
filename = "ggml-vicuna-7b-1.1-q4_1.bin"

download_file(ggml_model_path, filename)


llm = Llama(model_path=filename, n_ctx=512, n_batch=126)


def generate_text(prompt="Who is the CEO of Apple?"):
    output = llm(
        prompt,
        max_tokens=256,
        temperature=0.1,
        top_p=0.5,
        echo=False,
        stop=["#"],
    )
    output_text = output["choices"][0]["text"].strip()

    # Remove Prompt Echo from Generated Text
    cleaned_output_text = output_text.replace(prompt, "")
    return cleaned_output_text


description = "Vicuna-7B"

examples = [
    ["What is the capital of France?", "The capital of France is Paris."],
    [
        "Who wrote the novel 'Pride and Prejudice'?",
        "The novel 'Pride and Prejudice' was written by Jane Austen.",
    ],
    ["What is the square root of 64?", "The square root of 64 is 8."],
]

gradio_interface = gr.Interface(
    fn=generate_text,
    inputs="text",
    outputs="text",
    examples=examples,
    title="Vicuna-7B",
)
gradio_interface.launch()