Spaces:
Running
on
A10G
Running
on
A10G
File size: 2,468 Bytes
726ec90 a00c4d5 726ec90 2ec9baa 726ec90 a00c4d5 9254534 a00c4d5 726ec90 6831f1f 726ec90 9254534 a00c4d5 457d4b2 a00c4d5 726ec90 9e4dc76 726ec90 a00c4d5 8e4fbb4 a00c4d5 726ec90 9254534 457d4b2 726ec90 2ec9baa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import io
from typing import List
import threading
from multiprocessing import Queue
from queue import Empty
from faster_whisper import WhisperModel
import logging
import sys
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
handlers=[logging.StreamHandler(sys.stdout)],
)
# Get a logger for your app
logger = logging.getLogger(__name__)
class AudioTranscriber(threading.Thread):
def __init__(
self,
audio_queue: "Queue[io.BytesIO]",
text_queue: "Queue[str]",
language: str = "en",
confidence_threshold: float = 0.5,
):
super().__init__()
self.audio_queue = audio_queue
self.action_queue = text_queue
self.daemon = True # Thread will exit when main program exits
self.max_buffer_size = 5
self.language = language
self.confidence_threshold = confidence_threshold
self.buffer: List[io.BytesIO] = []
self.transcriber = WhisperModel(
"large",
device="cuda",
compute_type="int8",
)
def run(self):
while True:
try:
# Wait for 1 second before timing out and checking again
audio_chunk = self.audio_queue.get(timeout=1)
self.buffer.append(audio_chunk)
while len(self.buffer) >= self.max_buffer_size:
_ = self.buffer.pop(0)
# Create a BytesIO object from the joined buffer
joined_buffer = io.BytesIO(
b"".join([chunk.getvalue() for chunk in self.buffer])
)
segments, info = self.transcriber.transcribe(
joined_buffer, language=self.language
)
# Put the transcription results in the output queue
for segment in segments:
if segment.no_speech_prob <= self.confidence_threshold:
self.action_queue.put(segment.text)
# Still print for debugging
logger.info(
f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}"
)
except Empty:
continue # If queue is empty, continue waiting
except Exception as e:
logger.error(f"Error processing audio chunk: {e}")
|