File size: 19,417 Bytes
4008379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7994f4a
4008379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4de5cf
4008379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f96c0d
4008379
b4de5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f96c0d
 
b4de5cf
4008379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import spaces
import gradio as gr
import os
from transformers import pipeline
from collections import defaultdict
import torch

from typing import Iterable
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from PIL import Image
import datetime
from diffusers import DiffusionPipeline
import random
import numpy as np
from huggingface_hub import login

login(token=os.environ.get("TOKEN"))

device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16

print('script starting up...')

# never do this"
print('loading model...')
auth_token = True
pipe = DiffusionPipeline.from_pretrained("Mitsua/mitsua-likes", token=auth_token, trust_remote_code=True).to(device, dtype=dtype)
bad_words = os.environ.get("BAD_WORDS").split(",")

PUBLIC_CHARACTER_NAMES_JA = set([
'絵藍ミツア',
'つくよみちゃん',
'ずんだもん',
'紡ネン',
'東北ずん子',
'東北イタコ',
'東北きりたん',
'四国めたん',
'中国うさぎ',
'原型ずんだもん',
'九州そら',
'大江戸ちゃんこ',
'フィーちゃん',
'19歳つくよみちゃん'
])

PUBLIC_CHARACTER_NAMES_EN = set([
'elanmitsua',
'tsukuyomichan',
'zundamon',
'tsumugi nen',
'touhoku zunko',
'touhoku itako',
'touhoku kiritan',
'shikoku metan',
'chugoku usagi',
'zundamon_original',
'kyushu_sora',
'kansai_shinobi',
'ccd-0500',
'19sai_tsukuyomichan'
])

PUBLIC_CHARACTER_LINKS = {
 '絵藍ミツア': "https://elanmitsua.com/",
 '原型ずんだもん': "https://zunko.jp/",
 '九州そら': "https://zunko.jp/",
 '大江戸ちゃんこ': "https://zunko.jp/",
 'フィーちゃん': "https://u-stella.co.jp/gallery/ccd-0500/",
 '19歳つくよみちゃん': "https://tyc.rei-yumesaki.net/",
 'つくよみちゃん': "https://tyc.rei-yumesaki.net/",
 'ずんだもん': "https://zunko.jp/",
 '紡ネン': "https://tsumuginen.com/guideline",
 '東北ずん子': "https://zunko.jp/",
 '東北イタコ': "https://zunko.jp/",
 '東北きりたん': "https://zunko.jp/",
 '四国めたん': "https://zunko.jp/",
 '中国うさぎ': "https://zunko.jp/"
}

license_str_ja_orig = """
# 画像ライセンス : [Mitsua Likes 表示-非営利](https://elanmitsua.notion.site/Mitsua-Likes-15baa85a9b278005bba5f30866a35f48)
## クレジット表示必須
- 生成物にMitsua Likesのクレジットを合理的な方法で表示しなければなりません。クレジットは以下のいずれかを指します。
  - Generated by Mitsua Likes
  - 画像生成:Mitsua Likes
## 非商用限定
- 生成物の商用利用不可 (自身の創造的目的のための個人商用利用を除く)
- 企業商用利用については[お問い合わせ](https://abstractengine.ltd/#contact)までお問い合わせください
## 禁止事項(抜粋)
- 差別・誹謗中傷・侮辱・名誉棄損
- 第三者の知的財産権・プライバシーの侵害
- 虚偽の情報の流布
- 営利目的で素材として販売する行為
- 機械学習を目的とした、データセット作成行為
- その他、法令、公序良俗に違反する/おそれがある反社会的行為
"""

license_str_en_orig = """
# Image License : [Mitsua Likes BY-NC](https://elanmitsua.notion.site/Mitsua-Likes-Attribution-NonCommercial-License-15baa85a9b278038be5dc7f47a9c26cc)
## Attribution required
- You must give appropriate credit of "Mitsua Likes" for sharing generated result. “Credits for Mitsua Likes” means displaying one of the following statements:
  - Generated by Mitsua Likes
  - 画像生成:Mitsua Likes
## Non-Commercial use only
- Non-Commercial use only, except for individual commercial use of creative purpose.
- For corporation commercial use, please contact at [this contact form](https://abstractengine.ltd/en/#contact)
## Prohibited Acts
- Acts that discriminate against, defame, or insult MITSUA Project or third parties, damaging their honor or credibility.
- Acts that infringe or may infringe on the intellectual property rights or privacy of MITSUA Project or third parties.
- Disseminating information or content that unjustly harms the interests of MITSUA Project or third parties.
- Disseminating false information or content.
- Distributing or selling the Mitsua Likes Generated Data, etc., as materials for commercial purposes.
- Other antisocial acts that violate or may violate laws, regulations, or public order and morals.
- Creating a dataset composed primarily of Generated Data for the purpose of machine learning.
"""

@spaces.GPU
def infer_impl(
    prompt,
    style,
    lang='ja',
    negative_prompt="elan doodle",
    seed=42,
    randomize_seed=True,
    ar="1:1",
    # width=672,
    # height=896,
    guidance_scale=5.0,
    num_inference_steps=40,
    progress=gr.Progress(track_tqdm=True),
):
    now = datetime.datetime.now()
    style_to_prompt  = {
        "sensei art / 先生アート" : "先生アートsensei artイラスト", 
        "digital illustration / デジタルイラスト" : "デジタルイラスト、digital illustration", 
        "analog illustration / アナログイラスト" : "アナログ風、illustration", 
        "3d cg" : "3d cg", 
        "artworks / 芸術作品" : "芸術作品artworks, paintings", 
        # "none": "",
    }
    style2negative_prompt = {
        "sensei art / 先生アート" : "photo", 
        "digital illustration / デジタルイラスト" : "photo", 
        "analog illustration / アナログイラスト" : "vrm, cg, photo", 
        "3d cg" : "photo", 
        "artworks / 芸術作品" : "vrm, cg, photo", 
        # "none" : "",
    }

    if any([a in prompt for a in bad_words]):
        return None, "## <span style='color:orangered'>ERROR: Invalid prompt / 不適切なプロンプト </span>", None, seed

    if randomize_seed:
        seed = random.randint(0, np.iinfo(np.int32).max)

    generator = torch.Generator(device=device).manual_seed(seed)
    if style_to_prompt[style] != "":
        prompt = style_to_prompt[style] + ", " + prompt
        # prompt = prompt  + " " + style_to_prompt[style]
    negative_prompt = negative_prompt + ", " + style2negative_prompt[style]
    
    width, height = 768, 768
    if ar == '16:9':
        width, height = 1024, 576
    elif ar == '4:3':
        width, height = 896, 672
    elif ar == '1:1':
        width, height = 768, 768
    elif ar == '3:4':
        width, height = 672, 896
    elif ar == '9:16':
        width, height = 576, 1024
    
    ret = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        guidance_rescale=0.7,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    )
    image = ret.images[0]
    detected_public_fictional_characters = ret.detected_public_fictional_characters[0]
    detected_public_fictional_characters_info=ret.detected_public_fictional_characters_info[0]


    license_str_ja = license_str_ja_orig
    license_str_en = license_str_en_orig

    def get_link_str(k):
        return f"[{k}]({PUBLIC_CHARACTER_LINKS[k]})" if k in PUBLIC_CHARACTER_LINKS else k
    
    if len(detected_public_fictional_characters) > 0:
        license_str_ja += f"## <span style='color:orangered'>類似による追加の制約: {','.join(detected_public_fictional_characters)}</span>\n"
        license_str_en += f"## <span style='color:orangered'>Similarity Restriction: {','.join(detected_public_fictional_characters)}</span>\n"
        for k,v in detected_public_fictional_characters_info.items():
            if k in detected_public_fictional_characters:
                license_str_ja += f"- 「{get_link_str(k)}」の利用規約または二次創作ガイドラインに従う必要があります\n"
                license_str_en += f"- Abide by the terms or the derivative guideline of \"{get_link_str(k)}\" required.\n"

    if any([a in prompt for a in PUBLIC_CHARACTER_NAMES_JA if a not in detected_public_fictional_characters]):
        license_str_ja += f"## <span style='color:orangered'>プロンプトによる追加の制約: {','.join([a for a in PUBLIC_CHARACTER_NAMES_JA if a in prompt and a not in detected_public_fictional_characters])}</span>\n"
        license_str_en += f"## <span style='color:orangered'>Prompt Restriction: {','.join([a for a in PUBLIC_CHARACTER_NAMES_JA if a in prompt and a not in detected_public_fictional_characters])}</span>\n"
        for k in PUBLIC_CHARACTER_NAMES_JA:
            if k in prompt and k not in detected_public_fictional_characters:
                license_str_ja += f"- 「{get_link_str(k)}」の利用規約または二次創作ガイドラインに従う必要があります\n"
                license_str_en += f"- Abide by the terms or the derivative guideline of \"{get_link_str(k)}\" required.\n"

    if any([a in prompt for a in PUBLIC_CHARACTER_NAMES_EN if a not in detected_public_fictional_characters]):
        license_str_ja += f"## <span style='color:orangered'>プロンプトによる追加の制約: {','.join([a for a in PUBLIC_CHARACTER_NAMES_EN if a in prompt and a not in detected_public_fictional_characters])}</span>\n"
        license_str_en += f"## <span style='color:orangered'>Prompt Restriction: {','.join([a for a in PUBLIC_CHARACTER_NAMES_EN if a in prompt and a not in detected_public_fictional_characters])}</span>\n"
        for k in PUBLIC_CHARACTER_NAMES_EN:
            if k in prompt and k not in detected_public_fictional_characters:
                license_str_ja += f"- 「{get_link_str(k)}」の利用規約または二次創作ガイドラインに従う必要があります\n"
                license_str_en += f"- Abide by the terms or the derivative guideline of \"{get_link_str(k)}\" required.\n"

    names = [c for c in detected_public_fictional_characters_info if c not in detected_public_fictional_characters and not c in prompt]
    if len(names) > 0:
        license_str_ja += f"## <span style='color:darkorange'>類似可能性の通知: {','.join(names)}</span>\n"
        license_str_en += f"## <span style='color:darkorange'>Possible Similarity Notice: {','.join(names)}</span>\n"
        for k in names:
            license_str_ja += f"- 「{get_link_str(k)}」に類似している可能性があります。公式キャラクターデザインをご確認の上、「{get_link_str(k)}」の利用規約または二次創作ガイドラインに従うかを検討してください\n"
            license_str_en += f"- Image might look like \"{get_link_str(k)}\". Please confirm their character design and consider to abide by their derivative guideline.\n"

    license_str = license_str_ja if lang.startswith('ja') else license_str_en

    likes_logo_img = Image.open("LikesHFFooter.png")
    likes_logo_top_img = Image.open("MitsuaLikesLogoWhite.png")
    image_w_logo = Image.new("RGB", (image.width, image.height + likes_logo_img.height), (255, 255, 255))
    image_w_logo.paste(image)
    image_w_logo.paste(likes_logo_top_img, (image.width - likes_logo_top_img.width,0), likes_logo_top_img)
    image_w_logo.paste(likes_logo_img, (0, image.height))
    return image_w_logo, license_str, detected_public_fictional_characters_info, seed

def infer(
    prompt,
    style,
    lang='ja',
    negative_prompt="elan doodle",
    seed=42,
    randomize_seed=True,
    ar="1:1",
    # width=672,
    # height=896,
    guidance_scale=5.0,
    num_inference_steps=40,
    progress=gr.Progress(track_tqdm=True),
):
    if any([a in prompt for a in bad_words]):
        return None, "## <span style='color:orangered'>ERROR: Invalid prompt / 不適切なプロンプト </span>", None, seed    
    yield None, None, None, seed
    yield infer_impl(prompt, style, lang, negative_prompt, seed, randomize_seed, ar, guidance_scale, num_inference_steps, progress)


# Seafoam theme based on
# https://huggingface.co/spaces/gradio/seafoam
# https://github.com/gradio-app/gradio
class ModifiedSeafoam(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.cyan,
        secondary_hue: colors.Color | str = colors.sky,
        neutral_hue: colors.Color | str = colors.sky,
        spacing_size: sizes.Size | str = sizes.spacing_sm,
        radius_size: sizes.Size | str = sizes.radius_lg,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Quicksand"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            body_background_fill="linear-gradient(0deg, *primary_200, *primary_50)",
            body_background_fill_dark="linear-gradient(0deg, *secondary_900, *secondary_950)",
            button_primary_background_fill="linear-gradient(0deg, *primary_400, *secondary_400)",
            button_primary_background_fill_hover="linear-gradient(0deg, *primary_400, *secondary_200)",
            button_primary_background_fill_dark="linear-gradient(0deg, *primary_800, *secondary_800)",
            button_primary_background_fill_hover_dark="linear-gradient(0deg, *primary_800, *secondary_600)",
            button_primary_text_color="*primary_900",
            button_primary_text_color_hover="*primary_800",
            slider_color="*secondary_300",
            slider_color_dark="*primary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            # button_shadow="*shadow_drop_lg",
            # button_large_padding="32px",
        )




if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description='Mitsua Likes Image Generator')
    parser.add_argument('--share', action="store_true")
    args = parser.parse_args()
    ui_text = {
        'title': 'Mitsua Likes Demo',
        'description': "Let's enjoy image generation!",
        'dropdown_label': 'Translation Direction',
        'textbox_placeholder': 'Enter text here',
        'checkbox_label': 'Translate by sentence'
    }
    with open('app.js', mode='r', encoding='utf-8') as jsfp:
        js = jsfp.read()
    theme = ModifiedSeafoam()
    css="""
        #output_image {
            display: block !important;
            margin-left: auto !important;
            margin-right: auto !important;
            max-width: 640px !important;
            max-height: 640px !important;
            overflow: hidden !important;
            position: relative !important;
        }
        #output_image img {
            object-fit: contain !important;
            max-width: 100% !important; 
            max-height: 635px !important;
            width: auto !important; 
            height: auto !important;
        }
        footer {
            display:none !important
        }
        """
    with gr.Blocks(title=ui_text['title'], js=js, css=css, theme=theme) as demo:
    # with gr.Blocks(title=ui_text['title'], theme=theme) as demo:
        gr.Markdown("""
# Title
### ミツアちゃんと楽しく画像生成🔖
Demo for [Mitsua Likes model](https://huggingface.co/Mitsua/mitsua-likes) licensed under [Mitsua Likes Attribution Non-Commercial License](https://elanmitsua.notion.site/Mitsua-Likes-Attribution-NonCommercial-License-15baa85a9b278038be5dc7f47a9c26cc)                  
                    """, elem_id='title')
        li = """
- Description
- Notes
- Notes
- Notes
- Notes
- Disclaimer
- Copyright
"""
        # Hidden textbox to store the language
        lang_input = gr.Textbox(value='', elem_id='lang_input', visible=False, interactive=False)
        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                lines=1, max_lines=3, 
                placeholder="Enter prompt here",
                elem_id="text_input",
                container=False,
                min_width=500,             
            )
            btn = gr.Button("Generate", elem_id='start_btn', variant="primary", size="lg", min_width=240, scale=0)
        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
                lines=1, max_lines=3, 
                placeholder="Enter negative prompt here",
                value="elan doodle, lowres",
                elem_id="text_input",
                # container=False,            
            )
            
            with gr.Row():
                with gr.Column(scale=1):
                    styles = gr.Dropdown(
                        ["sensei art / 先生アート", "digital illustration / デジタルイラスト", "analog illustration / アナログイラスト", "3d cg", "artworks / 芸術作品"],
                        value="digital illustration / デジタルイラスト",
                        label="Style",            
                    )
                with gr.Column(scale=1):
                    ar = gr.Dropdown(
                        ["16:9", "4:3", "1:1", "3:4", "9:16"],
                        value="3:4",
                        label="Aspect Ratio",            
                    )
                
                with gr.Column(scale=1):
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=np.iinfo(np.int32).max,
                        step=1,
                        value=0,
                    )                    
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
                guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=1,
                        maximum=10,
                        step=0.1,
                        value=5.0,
                    )

        with gr.Row():
            with gr.Column(scale=1):
                result = gr.Image(label="Result", show_label=False, elem_id="output_image", min_width=500)
            with gr.Column(scale=1):
                license_md = gr.Markdown("", elem_id='license_str')
                character_similarities = gr.Label(label="Character Similarity Measure")
        gr.Markdown(li, elem_id='description')
        gr.on(
            triggers=[btn.click, prompt.submit],
            fn = infer,
            inputs = [prompt, styles, lang_input, negative_prompt, seed, randomize_seed, ar, guidance_scale],
            outputs = [result, license_md, character_similarities, seed],
            js="""
            function(x, z, y, a, b, c, d, e){
                var userLang = navigator.language || navigator.userLanguage;
                let langInputElement = document.querySelector("#lang_input textarea");
                return [x,z,userLang,a,b,c,d,e];
            }
            """,
        )

    demo.queue().launch(show_api=False, share=False)