MnLgt's picture
"hi"
f725299
raw
history blame
5.07 kB
"""
This script creates a Gradio GUI for detecting and classifying signature blocks in document images
using the SignatureBlockModel. It loads example images from the /assets directory, displays
bounding boxes in the result image, and shows cropped signature blocks with labels in a separate view.
"""
import gradio as gr
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import io
from typing import Tuple
import os
from scripts.signature_blocks import SignatureBlockModel
ASSETS_DIR = os.path.join(os.path.dirname(__file__), "assets")
def process_image(image: np.ndarray) -> Tuple[np.ndarray, str, np.ndarray]:
"""
Process an input image using the SignatureBlockModel.
Args:
image (np.ndarray): Input image as a numpy array.
Returns:
Tuple[np.ndarray, str, np.ndarray]: Processed image, status, and signature crops image.
"""
# Convert numpy array to PIL Image
pil_image = Image.fromarray(image)
# Initialize the model
model = SignatureBlockModel(pil_image)
# Get processed image with boxes
image_with_boxes = model.draw_boxes()
# Get signature crops
signature_crops = create_signature_crops(model)
# Determine status
labels = model.get_labels()
if not labels.any():
status = "Unsigned"
elif all(label == 1 for label in labels):
status = "Fully Executed"
elif all(label == 2 for label in labels):
status = "Unsigned"
else:
status = "Partially Executed"
return np.array(image_with_boxes), status, signature_crops
def resize_crop(crop: np.ndarray, factor=0.5) -> np.ndarray:
"""
Resize a crop to a target size.
Args:
crop (np.ndarray): Input crop as a numpy array.
target_size (Tuple[int, int]): Target size for the crop.
Returns:
np.ndarray: Resized crop.
"""
crop_image = Image.fromarray(crop).convert("RGB")
crop_size = crop_image.size
target_size = tuple(int(dim * factor) for dim in crop_size)
print(f"Target Size: {target_size}")
crop_image = crop_image.resize(target_size)
return np.array(crop_image)
def create_signature_crops(model: SignatureBlockModel) -> np.ndarray:
"""
Create an image with stacked signature crops and labels.
Args:
model (SignatureBlockModel): The initialized SignatureBlockModel.
Returns:
np.ndarray: Image with stacked signature crops and labels.
"""
boxes = model.get_boxes()
scores = model.get_scores()
labels = model.get_labels()
classes = model.classes
# Create a figure with the correct number of subplots
fig, axes = plt.subplots(len(boxes), 2, figsize=(10, 3 * len(boxes)))
# plt.subplots_adjust(hspace=0.5, wspace=0.1) # Add space between subplots
# Ensure axes is always a 2D array, even with only one box
if len(boxes) == 1:
axes = axes.reshape(1, -1)
for (ax_label, ax_image), box, label, score in zip(axes, boxes, labels, scores):
crop = model.extract_box(box)
crop = resize_crop(crop, 0.7)
# Set background color to black for both subplots
ax_label.set_facecolor("black")
ax_image.set_facecolor("black")
# Add label text
label_text = f"Label: {classes[label]}\nScore: {score:.2f}"
ax_label.text(
0.05,
0.5,
label_text,
color="white",
fontsize=12,
verticalalignment="center",
horizontalalignment="left",
)
ax_label.axis("off")
# Display the crop
ax_image.imshow(crop)
ax_image.axis("off")
plt.tight_layout()
# Convert the matplotlib figure to a PNG image
buf = io.BytesIO()
plt.savefig(buf, format="png", facecolor="black", edgecolor="none")
buf.seek(0)
signature_crops = np.array(Image.open(buf))
plt.close(fig)
return signature_crops
def load_examples():
"""
Load example images from the /assets directory.
Returns:
List[List[str]]: List of example image paths.
"""
examples = []
for filename in os.listdir(ASSETS_DIR):
if filename.lower().endswith((".png", ".jpg", ".jpeg")):
examples.append([os.path.join(ASSETS_DIR, filename)])
return examples
with gr.Blocks() as demo:
gr.Markdown("# Signature Block Detection")
gr.Markdown("Upload a document image to detect and classify signature blocks.")
with gr.Row():
input_image = gr.Image(label="Upload Document Image")
output_image = gr.Image(label="Processed Image")
with gr.Row():
status_box = gr.Textbox(label="Document Status")
signature_crops = gr.Image(label="Signature Crops")
process_btn = gr.Button("Process Image")
examples = gr.Examples(
examples=load_examples(),
inputs=input_image,
)
process_btn.click(
fn=process_image,
inputs=input_image,
outputs=[output_image, status_box, signature_crops],
)
if __name__ == "__main__":
demo.launch()