Spaces:
Runtime error
Runtime error
Mobil-DataLab
commited on
Commit
•
01c5659
1
Parent(s):
884bbd0
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from controlnet_aux import CannyDetector
|
4 |
+
from diffusers import FluxControlPipeline
|
5 |
+
from diffusers.utils import load_image
|
6 |
+
import random
|
7 |
+
import os
|
8 |
+
from huggingface_hub import login
|
9 |
+
|
10 |
+
# Autenticarse en HuggingFace
|
11 |
+
login(os.getenv("HUGGINGFACEHUB_TOKEN"))
|
12 |
+
|
13 |
+
# Configuración del modelo
|
14 |
+
model_id = "black-forest-labs/FLUX.1-Canny-dev"
|
15 |
+
pipe = FluxControlPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16).to("cuda")
|
16 |
+
|
17 |
+
# Procesador Canny para detección de bordes
|
18 |
+
processor = CannyDetector()
|
19 |
+
|
20 |
+
MAX_SEED = 2**32 - 1
|
21 |
+
MAX_IMAGE_SIZE = 1024
|
22 |
+
|
23 |
+
def generate_image(image, prompt, seed, random_seed, low_thresh, high_thresh, guidance_scale, num_inference_steps):
|
24 |
+
# Control de Seed
|
25 |
+
if random_seed:
|
26 |
+
seed = random.randint(0, MAX_SEED)
|
27 |
+
generator = torch.manual_seed(seed)
|
28 |
+
|
29 |
+
# Cargar imagen y aplicar Canny
|
30 |
+
control_image = processor(image, low_threshold=low_thresh, high_threshold=high_thresh,
|
31 |
+
detect_resolution=MAX_IMAGE_SIZE, image_resolution=MAX_IMAGE_SIZE)
|
32 |
+
|
33 |
+
# Generar imagen con Diffusers
|
34 |
+
generated_image = pipe(
|
35 |
+
prompt=prompt,
|
36 |
+
control_image=control_image,
|
37 |
+
height=MAX_IMAGE_SIZE,
|
38 |
+
width=MAX_IMAGE_SIZE,
|
39 |
+
num_inference_steps=num_inference_steps,
|
40 |
+
guidance_scale=guidance_scale,
|
41 |
+
generator=generator,
|
42 |
+
).images[0]
|
43 |
+
|
44 |
+
return generated_image, seed
|
45 |
+
|
46 |
+
# Interfaz Gradio
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
gr.Markdown("# Generador de Imágenes con FLUX.1 Canny 🚀")
|
49 |
+
|
50 |
+
with gr.Row():
|
51 |
+
image_input = gr.Image(type="pil", label="Sube tu imagen de control")
|
52 |
+
result_image = gr.Image(label="Imagen Generada")
|
53 |
+
|
54 |
+
with gr.Row():
|
55 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Describe la imagen que deseas generar...")
|
56 |
+
generate_button = gr.Button("Generar Imagen")
|
57 |
+
|
58 |
+
with gr.Accordion("Configuración Avanzada", open=False):
|
59 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
60 |
+
random_seed = gr.Checkbox(label="Randomizar Seed", value=True)
|
61 |
+
low_thresh = gr.Slider(label="Umbral Bajo Canny", minimum=0, maximum=255, step=1, value=50)
|
62 |
+
high_thresh = gr.Slider(label="Umbral Alto Canny", minimum=0, maximum=255, step=1, value=200)
|
63 |
+
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=30.0, step=0.1, value=7.5)
|
64 |
+
num_inference_steps = gr.Slider(label="Pasos de Inferencia", minimum=1, maximum=50, step=1, value=20)
|
65 |
+
|
66 |
+
generate_button.click(
|
67 |
+
generate_image,
|
68 |
+
inputs=[image_input, prompt, seed, random_seed, low_thresh, high_thresh, guidance_scale, num_inference_steps],
|
69 |
+
outputs=[result_image, seed]
|
70 |
+
)
|
71 |
+
|
72 |
+
if __name__ == "__main__":
|
73 |
+
demo.launch()
|