Spaces:
Runtime error
Runtime error
Mobil-DataLab
commited on
Commit
•
6aa35ae
1
Parent(s):
ff77928
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import torch
|
2 |
from controlnet_aux import CannyDetector
|
3 |
-
from diffusers import
|
4 |
from diffusers.utils import load_image
|
5 |
import gradio as gr
|
6 |
import random
|
@@ -9,69 +9,41 @@ import os
|
|
9 |
# Instalar dependencias en Hugging Face Spaces
|
10 |
os.system("pip install -U diffusers controlnet_aux mediapipe")
|
11 |
|
|
|
12 |
MAX_SEED = 2**32 - 1
|
13 |
MAX_IMAGE_SIZE = 1024
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
"black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.
|
18 |
-
)
|
19 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
20 |
-
"black-forest-labs/FLUX.1-Canny-dev", controlnet=controlnet, torch_dtype=torch.float32
|
21 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
|
23 |
# Procesador Canny
|
24 |
processor = CannyDetector()
|
25 |
|
|
|
26 |
def generate_image(image, prompt, seed, random_seed, low_thresh, high_thresh, guidance_scale, num_inference_steps):
|
|
|
27 |
if random_seed:
|
28 |
seed = random.randint(0, MAX_SEED)
|
29 |
generator = torch.manual_seed(seed)
|
30 |
-
|
31 |
-
#
|
32 |
control_image = processor(
|
33 |
image, low_threshold=low_thresh, high_threshold=high_thresh,
|
34 |
detect_resolution=MAX_IMAGE_SIZE, image_resolution=MAX_IMAGE_SIZE
|
35 |
)
|
36 |
-
|
37 |
-
# Generar
|
38 |
result = pipe(
|
39 |
prompt=prompt,
|
40 |
control_image=control_image,
|
41 |
-
height=image.height,
|
42 |
-
width=image.width,
|
43 |
-
num_inference_steps=num_inference_steps,
|
44 |
guidance_scale=guidance_scale,
|
45 |
generator=generator
|
46 |
).images[0]
|
47 |
-
|
48 |
return result, seed
|
49 |
|
50 |
-
# Interfaz Gradio
|
51 |
with gr.Blocks() as demo:
|
52 |
gr.Markdown("# Generador de Imágenes con FLUX.1 Canny-dev 🚀")
|
53 |
-
|
54 |
-
with gr.Row():
|
55 |
-
input_image = gr.Image(type="pil", label="Sube tu imagen de control")
|
56 |
-
output_image = gr.Image(label="Imagen Generada")
|
57 |
-
|
58 |
-
with gr.Row():
|
59 |
-
prompt = gr.Textbox(label="Prompt", placeholder="Describe la imagen que deseas generar...")
|
60 |
-
generate_button = gr.Button("Generar Imagen")
|
61 |
-
|
62 |
-
with gr.Accordion("Configuración Avanzada", open=False):
|
63 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
64 |
-
random_seed = gr.Checkbox(label="Randomizar Seed", value=True)
|
65 |
-
low_thresh = gr.Slider(label="Umbral Bajo Canny", minimum=0, maximum=255, step=1, value=50)
|
66 |
-
high_thresh = gr.Slider(label="Umbral Alto Canny", minimum=0, maximum=255, step=1, value=200)
|
67 |
-
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=30.0, step=0.1, value=7.5)
|
68 |
-
num_inference_steps = gr.Slider(label="Pasos de Inferencia", minimum=1, maximum=50, step=1, value=20)
|
69 |
-
|
70 |
-
generate_button.click(
|
71 |
-
generate_image,
|
72 |
-
inputs=[input_image, prompt, seed, random_seed, low_thresh, high_thresh, guidance_scale, num_inference_steps],
|
73 |
-
outputs=[output_image, seed]
|
74 |
-
)
|
75 |
-
|
76 |
-
if __name__ == "__main__":
|
77 |
-
demo.launch()
|
|
|
1 |
import torch
|
2 |
from controlnet_aux import CannyDetector
|
3 |
+
from diffusers import FluxControlPipeline
|
4 |
from diffusers.utils import load_image
|
5 |
import gradio as gr
|
6 |
import random
|
|
|
9 |
# Instalar dependencias en Hugging Face Spaces
|
10 |
os.system("pip install -U diffusers controlnet_aux mediapipe")
|
11 |
|
12 |
+
# Máximo valor para seeds y tamaño de imagen
|
13 |
MAX_SEED = 2**32 - 1
|
14 |
MAX_IMAGE_SIZE = 1024
|
15 |
|
16 |
+
# Inicialización del pipeline Flux Canny Dev
|
17 |
+
pipe = FluxControlPipeline.from_pretrained(
|
18 |
+
"black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.float16
|
|
|
|
|
|
|
19 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
|
21 |
# Procesador Canny
|
22 |
processor = CannyDetector()
|
23 |
|
24 |
+
@spaces.GPU
|
25 |
def generate_image(image, prompt, seed, random_seed, low_thresh, high_thresh, guidance_scale, num_inference_steps):
|
26 |
+
# Controlar el seed para reproducibilidad
|
27 |
if random_seed:
|
28 |
seed = random.randint(0, MAX_SEED)
|
29 |
generator = torch.manual_seed(seed)
|
30 |
+
|
31 |
+
# Aplicar CannyDetector a la imagen de control
|
32 |
control_image = processor(
|
33 |
image, low_threshold=low_thresh, high_threshold=high_thresh,
|
34 |
detect_resolution=MAX_IMAGE_SIZE, image_resolution=MAX_IMAGE_SIZE
|
35 |
)
|
36 |
+
|
37 |
+
# Generar imagen con el modelo Flux
|
38 |
result = pipe(
|
39 |
prompt=prompt,
|
40 |
control_image=control_image,
|
|
|
|
|
|
|
41 |
guidance_scale=guidance_scale,
|
42 |
generator=generator
|
43 |
).images[0]
|
44 |
+
|
45 |
return result, seed
|
46 |
|
47 |
+
# Interfaz de usuario Gradio
|
48 |
with gr.Blocks() as demo:
|
49 |
gr.Markdown("# Generador de Imágenes con FLUX.1 Canny-dev 🚀")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|