Spaces:
Runtime error
Runtime error
Mobil-DataLab
commited on
Commit
•
6ddaf9f
1
Parent(s):
14006da
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,61 @@
|
|
1 |
-
import gradio as gr
|
2 |
import torch
|
3 |
from controlnet_aux import CannyDetector
|
4 |
from diffusers import FluxControlPipeline
|
5 |
from diffusers.utils import load_image
|
|
|
6 |
import random
|
7 |
import os
|
8 |
-
from huggingface_hub import login
|
9 |
|
10 |
-
#
|
11 |
-
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
-
# Procesador
|
18 |
processor = CannyDetector()
|
19 |
|
20 |
-
|
21 |
-
MAX_IMAGE_SIZE = 1024
|
22 |
-
|
23 |
def generate_image(image, prompt, seed, random_seed, low_thresh, high_thresh, guidance_scale, num_inference_steps):
|
24 |
-
#
|
25 |
if random_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
generator = torch.manual_seed(seed)
|
28 |
|
29 |
-
#
|
30 |
-
control_image = processor(
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
# Generar imagen con
|
34 |
-
|
35 |
prompt=prompt,
|
36 |
control_image=control_image,
|
37 |
-
height=
|
38 |
-
width=
|
39 |
num_inference_steps=num_inference_steps,
|
40 |
guidance_scale=guidance_scale,
|
41 |
-
generator=generator
|
42 |
).images[0]
|
43 |
|
44 |
-
return
|
45 |
|
46 |
-
# Interfaz Gradio
|
47 |
with gr.Blocks() as demo:
|
48 |
-
gr.Markdown("# Generador de Imágenes con FLUX.1 Canny 🚀")
|
49 |
|
50 |
with gr.Row():
|
51 |
-
|
52 |
-
|
53 |
|
54 |
with gr.Row():
|
55 |
prompt = gr.Textbox(label="Prompt", placeholder="Describe la imagen que deseas generar...")
|
56 |
generate_button = gr.Button("Generar Imagen")
|
57 |
-
|
58 |
with gr.Accordion("Configuración Avanzada", open=False):
|
59 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
60 |
random_seed = gr.Checkbox(label="Randomizar Seed", value=True)
|
@@ -62,11 +63,11 @@ with gr.Blocks() as demo:
|
|
62 |
high_thresh = gr.Slider(label="Umbral Alto Canny", minimum=0, maximum=255, step=1, value=200)
|
63 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=30.0, step=0.1, value=7.5)
|
64 |
num_inference_steps = gr.Slider(label="Pasos de Inferencia", minimum=1, maximum=50, step=1, value=20)
|
65 |
-
|
66 |
generate_button.click(
|
67 |
generate_image,
|
68 |
-
inputs=[
|
69 |
-
outputs=[
|
70 |
)
|
71 |
|
72 |
if __name__ == "__main__":
|
|
|
|
|
1 |
import torch
|
2 |
from controlnet_aux import CannyDetector
|
3 |
from diffusers import FluxControlPipeline
|
4 |
from diffusers.utils import load_image
|
5 |
+
import gradio as gr
|
6 |
import random
|
7 |
import os
|
|
|
8 |
|
9 |
+
# Máximo valor para seeds y tamaño de imagen
|
10 |
+
MAX_SEED = 2**32 - 1
|
11 |
+
MAX_IMAGE_SIZE = 1024
|
12 |
|
13 |
+
# Inicialización del pipeline Flux Canny Dev
|
14 |
+
pipe = FluxControlPipeline.from_pretrained(
|
15 |
+
"black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.float32
|
16 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
|
18 |
+
# Procesador CannyDetector
|
19 |
processor = CannyDetector()
|
20 |
|
21 |
+
@spaces.GPU
|
|
|
|
|
22 |
def generate_image(image, prompt, seed, random_seed, low_thresh, high_thresh, guidance_scale, num_inference_steps):
|
23 |
+
# Controlar el seed para reproducibilidad
|
24 |
if random_seed:
|
25 |
seed = random.randint(0, MAX_SEED)
|
26 |
generator = torch.manual_seed(seed)
|
27 |
|
28 |
+
# Aplicar CannyDetector a la imagen de control
|
29 |
+
control_image = processor(
|
30 |
+
image, low_threshold=low_thresh, high_threshold=high_thresh,
|
31 |
+
detect_resolution=MAX_IMAGE_SIZE, image_resolution=MAX_IMAGE_SIZE
|
32 |
+
)
|
33 |
|
34 |
+
# Generar imagen con el modelo Flux
|
35 |
+
result = pipe(
|
36 |
prompt=prompt,
|
37 |
control_image=control_image,
|
38 |
+
height=image.height,
|
39 |
+
width=image.width,
|
40 |
num_inference_steps=num_inference_steps,
|
41 |
guidance_scale=guidance_scale,
|
42 |
+
generator=generator
|
43 |
).images[0]
|
44 |
|
45 |
+
return result, seed
|
46 |
|
47 |
+
# Interfaz de usuario Gradio
|
48 |
with gr.Blocks() as demo:
|
49 |
+
gr.Markdown("# Generador de Imágenes con FLUX.1 Canny-dev 🚀")
|
50 |
|
51 |
with gr.Row():
|
52 |
+
input_image = gr.Image(type="pil", label="Sube tu imagen de control")
|
53 |
+
output_image = gr.Image(label="Imagen Generada")
|
54 |
|
55 |
with gr.Row():
|
56 |
prompt = gr.Textbox(label="Prompt", placeholder="Describe la imagen que deseas generar...")
|
57 |
generate_button = gr.Button("Generar Imagen")
|
58 |
+
|
59 |
with gr.Accordion("Configuración Avanzada", open=False):
|
60 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
61 |
random_seed = gr.Checkbox(label="Randomizar Seed", value=True)
|
|
|
63 |
high_thresh = gr.Slider(label="Umbral Alto Canny", minimum=0, maximum=255, step=1, value=200)
|
64 |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=30.0, step=0.1, value=7.5)
|
65 |
num_inference_steps = gr.Slider(label="Pasos de Inferencia", minimum=1, maximum=50, step=1, value=20)
|
66 |
+
|
67 |
generate_button.click(
|
68 |
generate_image,
|
69 |
+
inputs=[input_image, prompt, seed, random_seed, low_thresh, high_thresh, guidance_scale, num_inference_steps],
|
70 |
+
outputs=[output_image, seed]
|
71 |
)
|
72 |
|
73 |
if __name__ == "__main__":
|