Spaces:
Runtime error
Runtime error
Commit
·
77f8a57
1
Parent(s):
881c1d5
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,21 +5,7 @@ from transformers import TFAutoModelForQuestionAnswering
|
|
| 5 |
from datasets import Dataset
|
| 6 |
import streamlit as st
|
| 7 |
|
| 8 |
-
#prompts
|
| 9 |
-
st.title("Tweet Sentiment Extractor...")
|
| 10 |
-
|
| 11 |
-
# take text/tweet input
|
| 12 |
-
textbox = st.text_area('Write your text in this box:', '',height=100, max_chars=500 )
|
| 13 |
-
option = st.selectbox(
|
| 14 |
-
'How would you like to be contacted?',
|
| 15 |
-
('positive', 'negative', 'neutral'))
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
python_dict = {"text":textbox, "sentiment":option}
|
| 19 |
|
| 20 |
-
dataset = Dataset.from_dict(python_dict)
|
| 21 |
-
|
| 22 |
-
MAX_LENGTH = 105
|
| 23 |
|
| 24 |
|
| 25 |
# loading saved roberta-base tokenizer to tokenize the text into input IDs that model can make sense of.
|
|
@@ -35,83 +21,104 @@ def load_model():
|
|
| 35 |
return TFAutoModelForQuestionAnswering.from_pretrained(model_checkpoint)
|
| 36 |
model = load_model()
|
| 37 |
|
| 38 |
-
def process_data(examples):
|
| 39 |
-
questions = examples["sentiment"]
|
| 40 |
-
context = examples["text"]
|
| 41 |
-
inputs = tokenizer(
|
| 42 |
-
questions,
|
| 43 |
-
context,
|
| 44 |
-
max_length = MAX_LENGTH,
|
| 45 |
-
padding="max_length",
|
| 46 |
-
return_offsets_mapping = True,
|
| 47 |
-
)
|
| 48 |
-
# Assigning None values to all offset mapping of tokens which are not the context tokens.
|
| 49 |
-
for i in range(len(inputs["input_ids"])):
|
| 50 |
-
offset = inputs["offset_mapping"][i]
|
| 51 |
-
sequence_ids = inputs.sequence_ids(i)
|
| 52 |
-
inputs["offset_mapping"][i] = [
|
| 53 |
-
o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
|
| 54 |
-
]
|
| 55 |
-
return inputs
|
| 56 |
-
|
| 57 |
-
processed_raw_data = dataset.map(
|
| 58 |
-
process_data,
|
| 59 |
-
batched = True
|
| 60 |
-
)
|
| 61 |
-
tf_raw_dataset = processed_raw_data.to_tf_dataset(
|
| 62 |
-
columns=["input_ids", "attention_mask"],
|
| 63 |
-
shuffle=False,
|
| 64 |
-
batch_size=1,
|
| 65 |
-
)
|
| 66 |
|
| 67 |
-
#
|
| 68 |
-
|
| 69 |
-
start_logits = outputs.start_logits
|
| 70 |
-
end_logits = outputs.end_logits
|
| 71 |
-
|
| 72 |
-
# Post Processing.
|
| 73 |
-
# Using start_logits and end_logits to generate the final answer from the given context.
|
| 74 |
-
n_best = 20
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
end_indexes = np.argsort(end_logit)[-1: -n_best - 1: -1].tolist()
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
# skip answer that are not in the context.
|
| 90 |
-
if offset[start_index] is None or offset[end_index] is None:
|
| 91 |
-
continue
|
| 92 |
-
# skip answer with length that is either < 0
|
| 93 |
-
if end_index < start_index:
|
| 94 |
-
continue
|
| 95 |
-
flag = True
|
| 96 |
-
answer = context[offset[start_index][0]: offset[end_index][1]]
|
| 97 |
-
predicted_answer.append(answer)
|
| 98 |
-
break
|
| 99 |
-
if flag:
|
| 100 |
-
break
|
| 101 |
-
if not flag:
|
| 102 |
-
predicted_answer.append(answer)
|
| 103 |
-
return {"predicted_answer":predicted_answer}
|
| 104 |
-
|
| 105 |
-
processed_raw_data.set_format("pandas")
|
| 106 |
-
|
| 107 |
-
processed_raw_df = processed_raw_data[:]
|
| 108 |
-
processed_raw_df["start_logits"] = start_logits.tolist()
|
| 109 |
-
processed_raw_df["end_logits"] = end_logits.tolist()
|
| 110 |
-
processed_raw_df["text"] = X["text"]
|
| 111 |
-
|
| 112 |
-
final_data = Dataset.from_pandas(processed_raw_df)
|
| 113 |
-
final_data = final_data.map(predict_answers,batched=True)
|
| 114 |
-
|
| 115 |
-
|
| 116 |
|
| 117 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from datasets import Dataset
|
| 6 |
import streamlit as st
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
|
| 11 |
# loading saved roberta-base tokenizer to tokenize the text into input IDs that model can make sense of.
|
|
|
|
| 21 |
return TFAutoModelForQuestionAnswering.from_pretrained(model_checkpoint)
|
| 22 |
model = load_model()
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
#prompts
|
| 26 |
+
st.title("Tweet Sentiment Extractor...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
# take text/tweet input
|
| 29 |
+
textbox = st.text_area('Write your text in this box:', '',height=100, max_chars=500 )
|
| 30 |
+
option = st.selectbox(
|
| 31 |
+
'How would you like to be contacted?',
|
| 32 |
+
('positive', 'negative', 'neutral'))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
python_dict = {"text":textbox, "sentiment":option}
|
|
|
|
| 36 |
|
| 37 |
+
dataset = Dataset.from_dict(python_dict)
|
| 38 |
+
|
| 39 |
+
MAX_LENGTH = 105
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
button = st.button('Extract text of the given sentiment..')
|
| 42 |
+
if button:
|
| 43 |
+
with st.spinner('In progress.......'):
|
| 44 |
+
|
| 45 |
+
def process_data(examples):
|
| 46 |
+
questions = examples["sentiment"]
|
| 47 |
+
context = examples["text"]
|
| 48 |
+
inputs = tokenizer(
|
| 49 |
+
questions,
|
| 50 |
+
context,
|
| 51 |
+
max_length = MAX_LENGTH,
|
| 52 |
+
padding="max_length",
|
| 53 |
+
return_offsets_mapping = True,
|
| 54 |
+
)
|
| 55 |
+
# Assigning None values to all offset mapping of tokens which are not the context tokens.
|
| 56 |
+
for i in range(len(inputs["input_ids"])):
|
| 57 |
+
offset = inputs["offset_mapping"][i]
|
| 58 |
+
sequence_ids = inputs.sequence_ids(i)
|
| 59 |
+
inputs["offset_mapping"][i] = [
|
| 60 |
+
o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
|
| 61 |
+
]
|
| 62 |
+
return inputs
|
| 63 |
+
|
| 64 |
+
processed_raw_data = dataset.map(
|
| 65 |
+
process_data,
|
| 66 |
+
batched = True
|
| 67 |
+
)
|
| 68 |
+
tf_raw_dataset = processed_raw_data.to_tf_dataset(
|
| 69 |
+
columns=["input_ids", "attention_mask"],
|
| 70 |
+
shuffle=False,
|
| 71 |
+
batch_size=1,
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
# final predictions.
|
| 75 |
+
outputs = model.predict(tf_raw_dataset)
|
| 76 |
+
start_logits = outputs.start_logits
|
| 77 |
+
end_logits = outputs.end_logits
|
| 78 |
+
|
| 79 |
+
# Post Processing.
|
| 80 |
+
# Using start_logits and end_logits to generate the final answer from the given context.
|
| 81 |
+
n_best = 20
|
| 82 |
+
|
| 83 |
+
def predict_answers(inputs):
|
| 84 |
+
predicted_answer = []
|
| 85 |
+
for i in range(len(inputs["offset_mapping"])):
|
| 86 |
+
start_logit = inputs["start_logits"][i]
|
| 87 |
+
end_logit = inputs["end_logits"][i]
|
| 88 |
+
context = inputs["text"][i]
|
| 89 |
+
offset = inputs["offset_mapping"][i]
|
| 90 |
+
start_indexes = np.argsort(start_logit)[-1: -n_best - 1:-1].tolist()
|
| 91 |
+
end_indexes = np.argsort(end_logit)[-1: -n_best - 1: -1].tolist()
|
| 92 |
+
|
| 93 |
+
flag = False
|
| 94 |
+
for start_index in start_indexes:
|
| 95 |
+
for end_index in end_indexes:
|
| 96 |
+
# skip answer that are not in the context.
|
| 97 |
+
if offset[start_index] is None or offset[end_index] is None:
|
| 98 |
+
continue
|
| 99 |
+
# skip answer with length that is either < 0
|
| 100 |
+
if end_index < start_index:
|
| 101 |
+
continue
|
| 102 |
+
flag = True
|
| 103 |
+
answer = context[offset[start_index][0]: offset[end_index][1]]
|
| 104 |
+
predicted_answer.append(answer)
|
| 105 |
+
break
|
| 106 |
+
if flag:
|
| 107 |
+
break
|
| 108 |
+
if not flag:
|
| 109 |
+
predicted_answer.append(answer)
|
| 110 |
+
return {"predicted_answer":predicted_answer}
|
| 111 |
+
|
| 112 |
+
processed_raw_data.set_format("pandas")
|
| 113 |
+
|
| 114 |
+
processed_raw_df = processed_raw_data[:]
|
| 115 |
+
processed_raw_df["start_logits"] = start_logits.tolist()
|
| 116 |
+
processed_raw_df["end_logits"] = end_logits.tolist()
|
| 117 |
+
processed_raw_df["text"] = X["text"]
|
| 118 |
+
|
| 119 |
+
final_data = Dataset.from_pandas(processed_raw_df)
|
| 120 |
+
final_data = final_data.map(predict_answers,batched=True)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
st.markdown("## " +final_data["predicted_answer"] )
|