File size: 1,365 Bytes
2b6b154
 
 
 
d24a963
 
1b3204d
 
145ecb9
d24a963
145ecb9
 
 
 
 
 
2b6b154
 
145ecb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b6b154
09e1b8b
145ecb9
09e1b8b
1b3204d
 
09e1b8b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
import spaces
import torch

import transformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "meta-llama/Meta-Llama-3-8B-Instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_name,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device="cuda",
)

@spaces.GPU
def chat_function(message, history):
    messages = [
        {"role": "system", "content": "You are a helpful assistant!"},
        {"role": "user", "content": message},
    ]
    prompt = pipeline.tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    terminators = [
        pipeline.tokenizer.eos_token_id,
        pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
    ]
    outputs = pipeline(
        prompt,
        max_new_tokens=256,
        eos_token_id=terminators,
        do_sample=True,
        temperature=0.6,
        top_p=0.9,
    )
    return outputs[0]["generated_text"][len(prompt):]

gr.ChatInterface(
    chat_function,
    chatbot=gr.Chatbot(height=300),
    textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
    title="LLAMA 3 8B Chat",
    description="Ask Yes Man any question",
    theme="soft",
    retry_btn=None,
    undo_btn="Delete Previous",
    clear_btn="Clear",
).launch()