Spaces:
Runtime error
Runtime error
File size: 5,043 Bytes
77a3002 1008ab2 65721af 10e5e54 1008ab2 77a3002 ac83c98 77a3002 f0b26a9 d9640db ac83c98 77a3002 5fd0a46 8489a3a 77a3002 65721af 10e5e54 8489a3a 52f9aa7 77a3002 421861c d9640db 1fc2033 f38df4a d9640db 52f9aa7 8489a3a d9640db a127868 d9640db 8489a3a d9640db f38df4a d9640db fd89e21 d9640db 73de17b fd89e21 d9640db 4dc6167 d9640db 77ab3f6 d9640db 77a3002 d9640db 1008ab2 77a3002 d9640db 77a3002 93cde06 f0b26a9 77a3002 f0b26a9 77a3002 8489a3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import yaml
import fitz
import torch
import gradio as gr
from PIL import Image
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import PyPDFLoader
from langchain.prompts import PromptTemplate
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import spaces
from langchain_text_splitters import CharacterTextSplitter,RecursiveCharacterTextSplitter
class PDFChatBot:
def __init__(self, config_path="config.yaml"):
"""
Initialize the PDFChatBot instance.
Parameters:
config_path (str): Path to the configuration file (default is "../config.yaml").
"""
self.processed = False
self.page = 0
self.chat_history = []
# Initialize other attributes to None
self.prompt = None
self.documents = None
self.embeddings = None
self.vectordb = None
self.tokenizer = None
self.model = None
self.pipeline = None
self.chain = None
self.chunk_size = None
self.current_context = None
self.format_seperator="""\n\n--\n\n"""
#self.chunk_size_slider = chunk_size_slider
def load_embeddings(self):
self.embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
print("Embedding model loaded")
def load_vectordb(self):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=256,
chunk_overlap=100,
length_function=len,
add_start_index=True,
)
docs = text_splitter.split_documents(self.documents)
self.vectordb = Chroma.from_documents(docs, self.embeddings)
print("Vector store created")
@spaces.GPU
def load_tokenizer(self):
self.tokenizer = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
@spaces.GPU
def create_organic_pipeline(self):
self.pipeline = pipeline(
"text-generation",
model="meta-llama/Meta-Llama-3-8B-Instruct",
model_kwargs={"torch_dtype": torch.bfloat16},
device="cuda",
)
self.load_tokenizer()
print("Model pipeline loaded")
def get_organic_context(self, query):
documents = self.vectordb.similarity_search_with_relevance_scores(query, k=3)
context = self.format_seperator.join([doc.page_content for doc, score in documents])
self.current_context = context
print("Context Ready")
print(self.current_context)
@spaces.GPU
def create_organic_response(self, history, query):
self.get_organic_context(query)
tokenizer = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
messages = [
{"role": "system", "content": "From the the contained given below, answer the question of user \n " + self.current_context},
{"role": "user", "content": query},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
temp = 0.1
outputs = self.pipeline(
prompt,
max_new_tokens=1024,
do_sample=True,
temperature=temp,
top_p=0.9,
)
return outputs[0]["generated_text"][len(prompt):]
def process_file(self, file):
"""
Process the uploaded PDF file and initialize necessary components: Tokenizer, VectorDB and LLM.
Parameters:
file (FileStorage): The uploaded PDF file.
"""
self.documents = PyPDFLoader(file.name).load()
self.load_embeddings()
self.load_vectordb()
#self.create_chain()
@spaces.GPU
def generate_response(self, history, query, file):
if not query:
raise gr.Error(message='Submit a question')
if not file:
raise gr.Error(message='Upload a PDF')
if not self.processed:
self.process_file(file)
self.processed = True
result = self.create_organic_response(history="",query=query)
return result,""
def render_file(self, file,chunk_size):
print(chunk_size)
doc = fitz.open(file.name)
page = doc[self.page]
self.chunk_size = chunk_size
pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72))
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples)
return image
def add_text(self, history, text):
"""
Add user-entered text to the chat history.
Parameters:
history (list): List of chat history tuples.
text (str): User-entered text.
Returns:
list: Updated chat history.
"""
if not text:
raise gr.Error('Enter text')
history.append((text, ''))
return history |