Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from pathlib import Path
|
4 |
-
from transformers import RagTokenForGeneration, RagTokenizer
|
5 |
import faiss
|
6 |
from typing import List
|
7 |
from pdfplumber import open as open_pdf
|
@@ -29,8 +29,19 @@ embeddings = rag_model.question_encoder(rag_tokenizer(text_chunks, padding=True,
|
|
29 |
index = faiss.IndexFlatL2(embeddings.size(-1))
|
30 |
index.add(embeddings.detach().numpy())
|
31 |
|
32 |
-
#
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def respond(
|
36 |
message,
|
@@ -52,8 +63,9 @@ def respond(
|
|
52 |
|
53 |
# Retrieve relevant chunks using the custom retriever
|
54 |
rag_input_ids = rag_tokenizer(message, return_tensors="pt").input_ids
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
# Generate the response using the zephyr model
|
59 |
for message in client.chat_completion(
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from pathlib import Path
|
4 |
+
from transformers import RagTokenForGeneration, RagTokenizer
|
5 |
import faiss
|
6 |
from typing import List
|
7 |
from pdfplumber import open as open_pdf
|
|
|
29 |
index = faiss.IndexFlatL2(embeddings.size(-1))
|
30 |
index.add(embeddings.detach().numpy())
|
31 |
|
32 |
+
# Custom retriever class
|
33 |
+
class CustomRetriever:
|
34 |
+
def __init__(self, documents, embeddings, index):
|
35 |
+
self.documents = documents
|
36 |
+
self.embeddings = embeddings
|
37 |
+
self.index = index
|
38 |
+
|
39 |
+
def get_relevant_docs(self, query_embeddings, top_k=4):
|
40 |
+
scores, doc_indices = self.index.search(query_embeddings.detach().numpy(), top_k)
|
41 |
+
return [(self.documents[doc_idx], score) for doc_idx, score in zip(doc_indices[0], scores[0])]
|
42 |
+
|
43 |
+
# Create a custom retriever instance
|
44 |
+
retriever = CustomRetriever(text_chunks, embeddings, index)
|
45 |
|
46 |
def respond(
|
47 |
message,
|
|
|
63 |
|
64 |
# Retrieve relevant chunks using the custom retriever
|
65 |
rag_input_ids = rag_tokenizer(message, return_tensors="pt").input_ids
|
66 |
+
query_embeddings = rag_model.question_encoder(rag_input_ids)
|
67 |
+
relevant_docs = retriever.get_relevant_docs(query_embeddings)
|
68 |
+
retrieved_text = "\n".join([doc for doc, _ in relevant_docs])
|
69 |
|
70 |
# Generate the response using the zephyr model
|
71 |
for message in client.chat_completion(
|