Moha782's picture
Update app.py
4cce6fa verified
raw
history blame
3.17 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import RagTokenizer, RagTokenForGeneration
from typing import List, Dict, Tuple
import re
import os
import torch
# Load the RAG model and tokenizer
rag_tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
rag_model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq")
# Load your PDF document
pdf_path = "apexcustoms.pdf"
with open(pdf_path, 'rb') as f:
pdf_text = f.read().decode('utf-8', errors='ignore')
# Split the PDF text into chunks
split_pattern = r'\n\n'
doc_chunks = re.split(split_pattern, pdf_text)
# Create the retriever input
corpus = [{"text": chunk} for chunk in doc_chunks]
"""
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: List[Tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Tokenize the input and retrieve relevant context from the PDF
inputs = rag_tokenizer(message, return_tensors="pt")
inputs.update({"corpus": corpus})
input_ids = inputs.pop("input_ids")
output_ids = rag_model.generate(**inputs, max_length=max_tokens, temperature=temperature, top_p=top_p, num_beams=2)
retrieved_context = rag_tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
context=retrieved_context, # Include the retrieved context
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a helpful car configuration assistant, specifically you are the assistant for Apex Customs (https://www.apexcustoms.com/). Given the user's input, provide suggestions for car models, colors, and customization options. Be creative and conversational in your responses. You should remember the user car model and tailor your answers accordingly. \n\nUser: ", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()