Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
"""
|
6 |
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
7 |
"""
|
8 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
10 |
-
# Load the question-answering pipeline
|
11 |
-
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
12 |
|
13 |
def respond(
|
14 |
message,
|
15 |
-
history:
|
16 |
system_message,
|
17 |
max_tokens,
|
18 |
temperature,
|
@@ -28,6 +44,11 @@ def respond(
|
|
28 |
|
29 |
messages.append({"role": "user", "content": message})
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
response = ""
|
32 |
|
33 |
for message in client.chat_completion(
|
@@ -36,12 +57,12 @@ def respond(
|
|
36 |
stream=True,
|
37 |
temperature=temperature,
|
38 |
top_p=top_p,
|
|
|
39 |
):
|
40 |
token = message.choices[0].delta.content
|
41 |
|
42 |
-
response = qa_pipeline(question=message, context=system_message)["answer"]
|
43 |
response += token
|
44 |
-
|
45 |
|
46 |
"""
|
47 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import pipeline
|
4 |
+
from typing import List, Dict, Tuple
|
5 |
+
import re
|
6 |
+
import os
|
7 |
+
|
8 |
+
# Set up the retriever pipeline
|
9 |
+
retriever = pipeline('retrieval', model='facebook/rag-token-nq')
|
10 |
+
|
11 |
+
# Load your PDF document
|
12 |
+
pdf_path = "apexcustoms.pdf"
|
13 |
+
with open(pdf_path, 'rb') as f:
|
14 |
+
pdf_text = f.read().decode('utf-8', errors='ignore')
|
15 |
+
|
16 |
+
# Split the PDF text into chunks
|
17 |
+
split_pattern = r'\n\n'
|
18 |
+
doc_chunks = re.split(split_pattern, pdf_text)
|
19 |
+
|
20 |
+
# Create the retriever input
|
21 |
+
corpus = [{"text": chunk} for chunk in doc_chunks]
|
22 |
|
23 |
"""
|
24 |
For more information on huggingface_hub Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
25 |
"""
|
26 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
27 |
|
|
|
|
|
28 |
|
29 |
def respond(
|
30 |
message,
|
31 |
+
history: List[Tuple[str, str]],
|
32 |
system_message,
|
33 |
max_tokens,
|
34 |
temperature,
|
|
|
44 |
|
45 |
messages.append({"role": "user", "content": message})
|
46 |
|
47 |
+
# Retrieve relevant context from the PDF
|
48 |
+
retrieval_output = retriever(message, corpus, top_k=3)
|
49 |
+
retrieved_contexts = [passage['text'] for passage in retrieval_output['retrieved_passages']]
|
50 |
+
context = ' '.join(retrieved_contexts)
|
51 |
+
|
52 |
response = ""
|
53 |
|
54 |
for message in client.chat_completion(
|
|
|
57 |
stream=True,
|
58 |
temperature=temperature,
|
59 |
top_p=top_p,
|
60 |
+
context=context, # Include the retrieved context
|
61 |
):
|
62 |
token = message.choices[0].delta.content
|
63 |
|
|
|
64 |
response += token
|
65 |
+
yield response
|
66 |
|
67 |
"""
|
68 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|