Moha782 commited on
Commit
3e55561
·
verified ·
1 Parent(s): d3c4702

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -18
app.py CHANGED
@@ -7,50 +7,41 @@ import numpy as np
7
  from huggingface_hub import InferenceClient
8
  from sentence_transformers import SentenceTransformer
9
 
10
- # Initialize the SentenceTransformer model
11
- model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
12
 
13
  # Extract text from PDF
14
  def extract_text_from_pdf(pdf_path):
15
  doc = fitz.open(pdf_path)
16
- text = ""
17
- for page_num in range(doc.page_count):
18
- page = doc.load_page(page_num)
19
- text += page.get_text()
20
- return text.split("\n\n")
21
 
22
  # Build FAISS index
23
  def build_faiss_index(documents):
 
24
  document_embeddings = model.encode(documents)
25
 
26
  index = faiss.IndexFlatL2(document_embeddings.shape[1])
27
- index.add(document_embeddings)
28
-
29
  faiss.write_index(index, "apexcustoms_index.faiss")
30
  model.save("sentence_transformer_model")
31
 
32
- return index
33
 
34
  # Ensure that text extraction and FAISS index building is done
35
  if not os.path.exists("apexcustoms_index.faiss") or not os.path.exists("sentence_transformer_model"):
36
  documents = extract_text_from_pdf("apexcustoms.pdf")
37
  with open("apexcustoms.json", "w") as f:
38
  json.dump(documents, f)
39
- index = build_faiss_index(documents)
40
  else:
41
  index = faiss.read_index("apexcustoms_index.faiss")
 
 
 
42
 
43
  # Hugging Face client
44
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
45
-
46
- def retrieve_documents(query, k=5):
47
- query_embedding = model.encode([query])
48
- distances, indices = index.search(query_embedding, k)
49
  return [documents[i] for i in indices[0]]
50
 
51
- async def respond(message, history, system_message, max_tokens, temperature, top_p):
52
- # Retrieve relevant documents
53
- relevant_docs = retrieve_documents(message)
54
  context = "\n\n".join(relevant_docs[:3]) # Limit context to top 3 documents
55
 
56
  # Limit history to the last 5 exchanges to reduce payload size
 
7
  from huggingface_hub import InferenceClient
8
  from sentence_transformers import SentenceTransformer
9
 
10
+
11
+
12
 
13
  # Extract text from PDF
14
  def extract_text_from_pdf(pdf_path):
15
  doc = fitz.open(pdf_path)
 
 
 
 
 
16
 
17
  # Build FAISS index
18
  def build_faiss_index(documents):
19
+ model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
20
  document_embeddings = model.encode(documents)
21
 
22
  index = faiss.IndexFlatL2(document_embeddings.shape[1])
 
 
23
  faiss.write_index(index, "apexcustoms_index.faiss")
24
  model.save("sentence_transformer_model")
25
 
26
+ return index, model
27
 
28
  # Ensure that text extraction and FAISS index building is done
29
  if not os.path.exists("apexcustoms_index.faiss") or not os.path.exists("sentence_transformer_model"):
30
  documents = extract_text_from_pdf("apexcustoms.pdf")
31
  with open("apexcustoms.json", "w") as f:
32
  json.dump(documents, f)
33
+ index, model = build_faiss_index(documents)
34
  else:
35
  index = faiss.read_index("apexcustoms_index.faiss")
36
+ model = SentenceTransformer('sentence_transformer_model')
37
+ with open("apexcustoms.json", "r") as f:
38
+ documents = json.load(f)
39
 
40
  # Hugging Face client
41
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
42
  return [documents[i] for i in indices[0]]
43
 
44
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
 
 
45
  context = "\n\n".join(relevant_docs[:3]) # Limit context to top 3 documents
46
 
47
  # Limit history to the last 5 exchanges to reduce payload size