Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from langchain_community.vectorstores.faiss import FAISS
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from langchain_community.llms import HuggingFaceHub
|
|
|
9 |
|
10 |
# Load the PDF document
|
11 |
loader = PyPDFLoader("apexcustoms.pdf")
|
@@ -15,12 +16,15 @@ data = loader.load()
|
|
15 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
|
16 |
texts = text_splitter.split_documents(data)
|
17 |
|
|
|
|
|
|
|
18 |
# Create a vector store
|
19 |
embeddings = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
20 |
-
texts = [doc.page_content for doc in
|
21 |
embeddings = embeddings.encode(texts) # Get the embeddings for the texts
|
22 |
|
23 |
-
vector_store = FAISS.from_documents(
|
24 |
|
25 |
# Initialize the HuggingFaceHub LLM
|
26 |
llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature": None, "top_p": None})
|
@@ -43,7 +47,7 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
43 |
|
44 |
messages.append({"role": "user", "content": message})
|
45 |
|
46 |
-
result = qa({"input_documents":
|
47 |
response = result["result"]
|
48 |
|
49 |
history.append((message, response))
|
|
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from langchain_community.llms import HuggingFaceHub
|
9 |
+
from langchain.docstore.document import Document
|
10 |
|
11 |
# Load the PDF document
|
12 |
loader = PyPDFLoader("apexcustoms.pdf")
|
|
|
16 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
|
17 |
texts = text_splitter.split_documents(data)
|
18 |
|
19 |
+
# Create a list of document objects from the texts
|
20 |
+
documents = [Document(page_content=doc.page_content) for doc in texts]
|
21 |
+
|
22 |
# Create a vector store
|
23 |
embeddings = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
24 |
+
texts = [doc.page_content for doc in documents] # Get the text content from the documents
|
25 |
embeddings = embeddings.encode(texts) # Get the embeddings for the texts
|
26 |
|
27 |
+
vector_store = FAISS.from_documents(documents, embeddings)
|
28 |
|
29 |
# Initialize the HuggingFaceHub LLM
|
30 |
llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature": None, "top_p": None})
|
|
|
47 |
|
48 |
messages.append({"role": "user", "content": message})
|
49 |
|
50 |
+
result = qa({"input_documents": documents, "question": message})
|
51 |
response = result["result"]
|
52 |
|
53 |
history.append((message, response))
|