Moha782 commited on
Commit
6594b61
·
verified ·
1 Parent(s): 8a68cb3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -6,6 +6,7 @@ from langchain_community.vectorstores.faiss import FAISS
6
  from sentence_transformers import SentenceTransformer
7
  from langchain.chains import RetrievalQA
8
  from langchain_community.llms import HuggingFaceHub
 
9
 
10
  # Load the PDF document
11
  loader = PyPDFLoader("apexcustoms.pdf")
@@ -15,12 +16,15 @@ data = loader.load()
15
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
16
  texts = text_splitter.split_documents(data)
17
 
 
 
 
18
  # Create a vector store
19
  embeddings = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
20
- texts = [doc.page_content for doc in texts] # Get the text content from the documents
21
  embeddings = embeddings.encode(texts) # Get the embeddings for the texts
22
 
23
- vector_store = FAISS.from_documents(texts, embeddings)
24
 
25
  # Initialize the HuggingFaceHub LLM
26
  llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature": None, "top_p": None})
@@ -43,7 +47,7 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
43
 
44
  messages.append({"role": "user", "content": message})
45
 
46
- result = qa({"input_documents": texts, "question": message})
47
  response = result["result"]
48
 
49
  history.append((message, response))
 
6
  from sentence_transformers import SentenceTransformer
7
  from langchain.chains import RetrievalQA
8
  from langchain_community.llms import HuggingFaceHub
9
+ from langchain.docstore.document import Document
10
 
11
  # Load the PDF document
12
  loader = PyPDFLoader("apexcustoms.pdf")
 
16
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
17
  texts = text_splitter.split_documents(data)
18
 
19
+ # Create a list of document objects from the texts
20
+ documents = [Document(page_content=doc.page_content) for doc in texts]
21
+
22
  # Create a vector store
23
  embeddings = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
24
+ texts = [doc.page_content for doc in documents] # Get the text content from the documents
25
  embeddings = embeddings.encode(texts) # Get the embeddings for the texts
26
 
27
+ vector_store = FAISS.from_documents(documents, embeddings)
28
 
29
  # Initialize the HuggingFaceHub LLM
30
  llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature": None, "top_p": None})
 
47
 
48
  messages.append({"role": "user", "content": message})
49
 
50
+ result = qa({"input_documents": documents, "question": message})
51
  response = result["result"]
52
 
53
  history.append((message, response))