Moha782 commited on
Commit
acd8e5c
·
verified ·
1 Parent(s): b6c1552

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -7
app.py CHANGED
@@ -7,6 +7,9 @@ import numpy as np
7
  from huggingface_hub import InferenceClient
8
  from sentence_transformers import SentenceTransformer
9
 
 
 
 
10
  # Extract text from PDF
11
  def extract_text_from_pdf(pdf_path):
12
  doc = fitz.open(pdf_path)
@@ -18,7 +21,6 @@ def extract_text_from_pdf(pdf_path):
18
 
19
  # Build FAISS index
20
  def build_faiss_index(documents):
21
- model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
22
  document_embeddings = model.encode(documents)
23
 
24
  index = faiss.IndexFlatL2(document_embeddings.shape[1])
@@ -27,19 +29,16 @@ def build_faiss_index(documents):
27
  faiss.write_index(index, "apexcustoms_index.faiss")
28
  model.save("sentence_transformer_model")
29
 
30
- return index, model
31
 
32
  # Ensure that text extraction and FAISS index building is done
33
  if not os.path.exists("apexcustoms_index.faiss") or not os.path.exists("sentence_transformer_model"):
34
  documents = extract_text_from_pdf("apexcustoms.pdf")
35
  with open("apexcustoms.json", "w") as f:
36
  json.dump(documents, f)
37
- index, model = build_faiss_index(documents)
38
  else:
39
  index = faiss.read_index("apexcustoms_index.faiss")
40
- model = SentenceTransformer('sentence_transformer_model')
41
- with open("apexcustoms.json", "r") as f:
42
- documents = json.load(f)
43
 
44
  # Hugging Face client
45
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
@@ -50,8 +49,12 @@ def retrieve_documents(query, k=5):
50
  return [documents[i] for i in indices[0]]
51
 
52
  def respond(message, history, system_message, max_tokens, temperature, top_p):
 
53
  relevant_docs = retrieve_documents(message)
54
- context = "\n\n".join(relevant_docs)
 
 
 
55
 
56
  messages = [{"role": "system", "content": system_message},
57
  {"role": "user", "content": f"Context: {context}\n\n{message}"}]
 
7
  from huggingface_hub import InferenceClient
8
  from sentence_transformers import SentenceTransformer
9
 
10
+ # Initialize the SentenceTransformer model
11
+ model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
12
+
13
  # Extract text from PDF
14
  def extract_text_from_pdf(pdf_path):
15
  doc = fitz.open(pdf_path)
 
21
 
22
  # Build FAISS index
23
  def build_faiss_index(documents):
 
24
  document_embeddings = model.encode(documents)
25
 
26
  index = faiss.IndexFlatL2(document_embeddings.shape[1])
 
29
  faiss.write_index(index, "apexcustoms_index.faiss")
30
  model.save("sentence_transformer_model")
31
 
32
+ return index
33
 
34
  # Ensure that text extraction and FAISS index building is done
35
  if not os.path.exists("apexcustoms_index.faiss") or not os.path.exists("sentence_transformer_model"):
36
  documents = extract_text_from_pdf("apexcustoms.pdf")
37
  with open("apexcustoms.json", "w") as f:
38
  json.dump(documents, f)
39
+ index = build_faiss_index(documents)
40
  else:
41
  index = faiss.read_index("apexcustoms_index.faiss")
 
 
 
42
 
43
  # Hugging Face client
44
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
49
  return [documents[i] for i in indices[0]]
50
 
51
  def respond(message, history, system_message, max_tokens, temperature, top_p):
52
+ # Retrieve relevant documents
53
  relevant_docs = retrieve_documents(message)
54
+ context = "\n\n".join(relevant_docs[:3]) # Limit context to top 3 documents
55
+
56
+ # Limit history to the last 5 exchanges to reduce payload size
57
+ history = history[-5:]
58
 
59
  messages = [{"role": "system", "content": system_message},
60
  {"role": "user", "content": f"Context: {context}\n\n{message}"}]