Moha782 commited on
Commit
b04030d
·
verified ·
1 Parent(s): c3b5073

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -22
app.py CHANGED
@@ -1,30 +1,11 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
- from langchain_community.document_loaders import PyPDFLoader
4
- from langchain.text_splitter import RecursiveCharacterTextSplitter
5
  from langchain_community.vectorstores.faiss import FAISS
6
- from sentence_transformers import SentenceTransformer
7
  from langchain.chains import RetrievalQA
8
  from langchain_community.llms import HuggingFaceHub
9
- from langchain.docstore.document import Document
10
 
11
- # Load the PDF document
12
- loader = PyPDFLoader("apexcustoms.pdf")
13
- data = loader.load()
14
-
15
- # Split the document into chunks
16
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
17
- texts = text_splitter.split_documents(data)
18
-
19
- # Create a list of document objects from the texts
20
- documents = [Document(page_content=doc.page_content) for doc in texts]
21
-
22
- # Create a vector store
23
- embeddings = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
24
- texts = [doc.page_content for doc in documents] # Get the text content from the documents
25
- embeddings = embeddings.encode(texts) # Get the embeddings for the texts
26
-
27
- vector_store = FAISS.from_documents(documents, embeddings)
28
 
29
  # Initialize the HuggingFaceHub LLM
30
  llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature": None, "top_p": None})
@@ -47,7 +28,7 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
47
 
48
  messages.append({"role": "user", "content": message})
49
 
50
- result = qa({"input_documents": documents, "question": message})
51
  response = result["result"]
52
 
53
  history.append((message, response))
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
3
  from langchain_community.vectorstores.faiss import FAISS
 
4
  from langchain.chains import RetrievalQA
5
  from langchain_community.llms import HuggingFaceHub
 
6
 
7
+ # Load the vector store from the saved index files
8
+ vector_store = FAISS.load_local("db.index", embeddings=None)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  # Initialize the HuggingFaceHub LLM
11
  llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature": None, "top_p": None})
 
28
 
29
  messages.append({"role": "user", "content": message})
30
 
31
+ result = qa({"input_documents": vector_store.texts, "question": message})
32
  response = result["result"]
33
 
34
  history.append((message, response))