Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,68 +7,61 @@ import nltk
|
|
7 |
import gradio as gr
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
#
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
#
|
67 |
-
|
68 |
-
# outputs="text",
|
69 |
-
# title="Hadith Classification App",
|
70 |
-
# description="Classify Hadith text based on pre-trained model."
|
71 |
-
# )
|
72 |
-
|
73 |
-
# # Launch the Gradio interface
|
74 |
-
# iface.launch()
|
|
|
7 |
import gradio as gr
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
|
10 |
+
class HadithClassificationApp:
|
11 |
+
def __init__(self):
|
12 |
+
# Download NLTK resources if needed
|
13 |
+
nltk.download('punkt')
|
14 |
+
|
15 |
+
# Load the dataset and labels
|
16 |
+
self.dataset = pd.read_csv("/home/user/app/Preprocess_LK_Hadith_dataset.csv")
|
17 |
+
self.labels = self.dataset['Arabic_Grade']
|
18 |
+
|
19 |
+
# Load the models
|
20 |
+
with open("tfidf_vectorizer.pkl", "rb") as f:
|
21 |
+
self.vectorizer = pickle.load(f)
|
22 |
+
with open("cosine_similarity_model.pkl", "rb") as f:
|
23 |
+
self.X = pickle.load(f)
|
24 |
+
|
25 |
+
@staticmethod
|
26 |
+
def remove_tashkeel(text):
|
27 |
+
tashkeel_pattern = re.compile(r'[\u0617-\u061A\u064B-\u0652]')
|
28 |
+
return re.sub(tashkeel_pattern, '', text)
|
29 |
+
|
30 |
+
def preprocess_arabic_text(self, text):
|
31 |
+
text = self.remove_tashkeel(text)
|
32 |
+
tokens = nltk.word_tokenize(text)
|
33 |
+
cleaned_tokens = [token for token in tokens if token.isalnum()]
|
34 |
+
lowercase_tokens = [token.lower() for token in cleaned_tokens]
|
35 |
+
return " ".join(lowercase_tokens)
|
36 |
+
|
37 |
+
def predict_label(self, input_text, threshold=0.5):
|
38 |
+
input_text = self.preprocess_arabic_text(input_text)
|
39 |
+
input_vector = self.vectorizer.transform([input_text])
|
40 |
+
similarities = cosine_similarity(input_vector, self.X).flatten()
|
41 |
+
|
42 |
+
max_index = np.argmax(similarities)
|
43 |
+
max_similarity = similarities[max_index]
|
44 |
+
|
45 |
+
if max_similarity >= threshold:
|
46 |
+
return self.labels.iloc[max_index]
|
47 |
+
else:
|
48 |
+
return "No similar text found in dataset"
|
49 |
+
|
50 |
+
def classify_hadith(self, input_text):
|
51 |
+
return self.predict_label(input_text)
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
# Initialize the app
|
55 |
+
hadith_classification_app = HadithClassificationApp()
|
56 |
+
|
57 |
+
# Set up the Gradio interface
|
58 |
+
iface = gr.Interface(
|
59 |
+
fn=hadith_classification_app.classify_hadith,
|
60 |
+
inputs="text",
|
61 |
+
outputs="text",
|
62 |
+
title="Hadith Classification App",
|
63 |
+
description="Classify Hadith text based on pre-trained model."
|
64 |
+
)
|
65 |
+
|
66 |
+
# Launch the Gradio interface
|
67 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|