|
import tensorflow as tf |
|
|
|
from huggingface_hub import from_pretrained_keras |
|
import pandas as pd |
|
import numpy as np |
|
import joblib |
|
import os |
|
import sys |
|
import pickle |
|
import shutil |
|
|
|
import librosa |
|
import librosa.display |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
|
|
from sklearn.preprocessing import StandardScaler, OneHotEncoder |
|
from sklearn.metrics import confusion_matrix, classification_report |
|
from sklearn.model_selection import train_test_split |
|
|
|
|
|
|
|
|
|
import keras |
|
from keras.preprocessing import sequence |
|
from keras.models import Sequential, model_from_json |
|
from keras.layers import Dense, Embedding |
|
from keras.layers import LSTM, BatchNormalization, GRU |
|
from keras.preprocessing.text import Tokenizer |
|
|
|
from tensorflow.keras.utils import to_categorical |
|
from keras.layers import Input, Flatten, Dropout, Activation |
|
from keras.layers import Conv1D, MaxPooling1D, AveragePooling1D |
|
from keras.models import Model |
|
from keras.callbacks import ModelCheckpoint |
|
from tensorflow.keras.optimizers import SGD |
|
from fastapi import FastAPI, Request, UploadFile, File |
|
|
|
|
|
import warnings |
|
if not sys.warnoptions: |
|
warnings.simplefilter("ignore") |
|
warnings.filterwarnings("ignore", category=DeprecationWarning) |
|
|
|
model=from_pretrained_keras( 'Mohamed41/MODEL_EMOTION_AR_TEXT_72P') |
|
|
|
|
|
with open('scaler3.pickle', 'rb') as f: |
|
scaler3 = pickle.load(f) |
|
|
|
with open('encoder3.pickle', 'rb') as f: |
|
encoder3 = pickle.load(f) |
|
|
|
def zcr(data,frame_length,hop_length): |
|
zcr=librosa.feature.zero_crossing_rate(data,frame_length=frame_length,hop_length=hop_length) |
|
return np.squeeze(zcr) |
|
def rmse(data,frame_length=2048,hop_length=512): |
|
rmse=librosa.feature.rms(y=data,frame_length=frame_length,hop_length=hop_length) |
|
return np.squeeze(rmse) |
|
def mfcc(data,sr,frame_length=2048,hop_length=512,flatten:bool=True): |
|
mfcc=librosa.feature.mfcc(y=data,sr=sr) |
|
return np.squeeze(mfcc.T)if not flatten else np.ravel(mfcc.T) |
|
|
|
def extract_features(data,sr=22050,frame_length=2048,hop_length=512): |
|
result=np.array([]) |
|
|
|
result=np.hstack((result, |
|
zcr(data,frame_length,hop_length), |
|
rmse(data,frame_length,hop_length), |
|
mfcc(data,sr,frame_length,hop_length) |
|
)) |
|
return result |
|
|
|
def get_predict_feat(path): |
|
d, s_rate= librosa.load(path, duration=2.5, offset=0.6) |
|
res=extract_features(d) |
|
result=np.array(res) |
|
result=np.reshape(result,newshape=(1,2376)) |
|
i_result = scaler3.transform(result) |
|
final_result=np.expand_dims(i_result, axis=2) |
|
|
|
return final_result |
|
|
|
|
|
emotions1 = {1: 'Neutral', 2: 'Calm', 3: 'Happy', 4: 'Sad', |
|
5: 'Angry', 6: 'Fear', 7: 'Disgust', 8: 'Surprise'} |
|
|
|
|
|
def prediction(path1): |
|
res=get_predict_feat(path1) |
|
predictions=model.predict(res) |
|
y_pred = encoder3.inverse_transform(predictions) |
|
print(y_pred[0][0]) |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
|
|
|
|
@app.post("/") |
|
async def read_root( file: UploadFile = File(...)): |
|
file_extension = os.path.splitext(file.filename)[1] |
|
with open("tmp"+file_extension, "wb") as buffer: |
|
shutil.copyfileobj(file.file, buffer) |
|
|
|
|
|
x = prediction("tmp"+file_extension) |
|
return {"filename": file.filename, "filepath": f"/app/{file.filename}","prediction":x} |
|
|