Mohamed41 commited on
Commit
d021940
·
1 Parent(s): 34a4e6a

Delete main.py

Browse files
Files changed (1) hide show
  1. main.py +0 -109
main.py DELETED
@@ -1,109 +0,0 @@
1
- import tensorflow as tf
2
- #from transformers import pipeline
3
- from huggingface_hub import from_pretrained_keras
4
- import pandas as pd
5
- import numpy as np
6
- import joblib
7
- import os
8
- import sys
9
- import pickle
10
- import shutil
11
- # librosa is a Python library for analyzing audio and music. It can be used to extract the data from the audio files we will see it later.
12
- import librosa
13
- import librosa.display
14
- import seaborn as sns
15
- import matplotlib.pyplot as plt
16
-
17
- from sklearn.preprocessing import StandardScaler, OneHotEncoder
18
- from sklearn.metrics import confusion_matrix, classification_report
19
- from sklearn.model_selection import train_test_split
20
-
21
- # to play the audio files
22
-
23
-
24
- import keras
25
- from keras.preprocessing import sequence
26
- from keras.models import Sequential, model_from_json
27
- from keras.layers import Dense, Embedding
28
- from keras.layers import LSTM, BatchNormalization, GRU
29
- from keras.preprocessing.text import Tokenizer
30
-
31
- from tensorflow.keras.utils import to_categorical
32
- from keras.layers import Input, Flatten, Dropout, Activation
33
- from keras.layers import Conv1D, MaxPooling1D, AveragePooling1D
34
- from keras.models import Model
35
- from keras.callbacks import ModelCheckpoint
36
- from tensorflow.keras.optimizers import SGD
37
- from fastapi import FastAPI, Request, UploadFile, File
38
-
39
-
40
- import warnings
41
- if not sys.warnoptions:
42
- warnings.simplefilter("ignore")
43
- warnings.filterwarnings("ignore", category=DeprecationWarning)
44
-
45
- model=from_pretrained_keras( 'Mohamed41/MODEL_EMOTION_AR_TEXT_72P')
46
-
47
-
48
- with open('scaler3.pickle', 'rb') as f:
49
- scaler3 = pickle.load(f)
50
-
51
- with open('encoder3.pickle', 'rb') as f:
52
- encoder3 = pickle.load(f)
53
-
54
- def zcr(data,frame_length,hop_length):
55
- zcr=librosa.feature.zero_crossing_rate(data,frame_length=frame_length,hop_length=hop_length)
56
- return np.squeeze(zcr)
57
- def rmse(data,frame_length=2048,hop_length=512):
58
- rmse=librosa.feature.rms(y=data,frame_length=frame_length,hop_length=hop_length)
59
- return np.squeeze(rmse)
60
- def mfcc(data,sr,frame_length=2048,hop_length=512,flatten:bool=True):
61
- mfcc=librosa.feature.mfcc(y=data,sr=sr)
62
- return np.squeeze(mfcc.T)if not flatten else np.ravel(mfcc.T)
63
-
64
- def extract_features(data,sr=22050,frame_length=2048,hop_length=512):
65
- result=np.array([])
66
-
67
- result=np.hstack((result,
68
- zcr(data,frame_length,hop_length),
69
- rmse(data,frame_length,hop_length),
70
- mfcc(data,sr,frame_length,hop_length)
71
- ))
72
- return result
73
-
74
- def get_predict_feat(path):
75
- d, s_rate= librosa.load(path, duration=2.5, offset=0.6)
76
- res=extract_features(d)
77
- result=np.array(res)
78
- result=np.reshape(result,newshape=(1,2376))
79
- i_result = scaler3.transform(result)
80
- final_result=np.expand_dims(i_result, axis=2)
81
-
82
- return final_result
83
-
84
-
85
- emotions1 = {1: 'Neutral', 2: 'Calm', 3: 'Happy', 4: 'Sad',
86
- 5: 'Angry', 6: 'Fear', 7: 'Disgust', 8: 'Surprise'}
87
-
88
-
89
- def prediction(path1):
90
- res=get_predict_feat(path1)
91
- predictions=loaded_model.predict(res)
92
- y_pred = encoder3.inverse_transform(predictions)
93
- print(y_pred[0][0])
94
-
95
-
96
- app = FastAPI()
97
-
98
-
99
-
100
-
101
- @app.post("/")
102
- async def read_root( file: UploadFile = File(...)):
103
- file_extension = os.path.splitext(file.filename)[1]
104
- with open("tmp"+file_extension, "wb") as buffer:
105
- shutil.copyfileobj(file.file, buffer)
106
-
107
-
108
- x = prediction("tmp"+file_extension)
109
- return {"filename": file.filename, "filepath": f"/app/{file.filename}","prediction":x}