Spaces:
Sleeping
Sleeping
MohamedRashad
commited on
Commit
·
74d9892
1
Parent(s):
890774d
feat: Add Arabic-ORPO-Llama3 chatbot comparison functionality
Browse files
app.py
CHANGED
@@ -4,106 +4,162 @@ import torch
|
|
4 |
import gradio as gr
|
5 |
from threading import Thread
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
torch_dtype=torch.bfloat16,
|
15 |
-
device_map="auto",
|
16 |
-
).eval()
|
17 |
-
new_model = AutoModelForCausalLM.from_pretrained(
|
18 |
-
new_model_id,
|
19 |
-
torch_dtype=torch.bfloat16,
|
20 |
-
device_map="auto",
|
21 |
-
).eval()
|
22 |
-
terminators = [
|
23 |
-
tokenizer.eos_token_id,
|
24 |
-
tokenizer.convert_tokens_to_ids("<|eot_id|>"),
|
25 |
]
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
@spaces.GPU(duration=120)
|
28 |
-
def generate_both(system_prompt, input_text,
|
29 |
-
|
30 |
-
|
31 |
|
32 |
system_prompt_list = [{"role": "system", "content": system_prompt}]
|
33 |
input_text_list = [{"role": "user", "content": input_text}]
|
34 |
|
35 |
-
|
36 |
-
for user, assistant in
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
for user, assistant in
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
base_messages = system_prompt_list +
|
46 |
-
new_messages = system_prompt_list +
|
47 |
|
48 |
-
|
49 |
base_messages,
|
50 |
add_generation_prompt=True,
|
51 |
return_tensors="pt"
|
52 |
-
).to(
|
53 |
|
54 |
-
|
55 |
new_messages,
|
56 |
add_generation_prompt=True,
|
57 |
return_tensors="pt"
|
58 |
-
).to(
|
59 |
|
60 |
-
|
61 |
-
input_ids=
|
62 |
-
streamer=
|
63 |
max_new_tokens=max_new_tokens,
|
64 |
-
eos_token_id
|
65 |
-
pad_token_id=tokenizer.eos_token_id,
|
66 |
do_sample=True if temperature > 0 else False,
|
67 |
temperature=temperature,
|
68 |
top_p=top_p,
|
69 |
repetition_penalty=repetition_penalty,
|
70 |
)
|
71 |
-
|
72 |
-
input_ids=
|
73 |
-
streamer=
|
74 |
max_new_tokens=max_new_tokens,
|
75 |
-
eos_token_id
|
76 |
-
pad_token_id=tokenizer.eos_token_id,
|
77 |
do_sample=True if temperature > 0 else False,
|
78 |
temperature=temperature,
|
79 |
top_p=top_p,
|
80 |
repetition_penalty=repetition_penalty,
|
81 |
)
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
def clear():
|
109 |
return [], []
|
@@ -113,8 +169,11 @@ with gr.Blocks(title="Arabic-ORPO-Llama3") as demo:
|
|
113 |
gr.HTML("<center><h1>Arabic Chatbot Comparison</h1></center>")
|
114 |
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="أنت متحدث لبق باللغة العربية!", rtl=True, text_align="right", show_copy_button=True)
|
115 |
with gr.Row(variant="panel"):
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
118 |
with gr.Row(variant="panel"):
|
119 |
with gr.Column(scale=1):
|
120 |
submit_btn = gr.Button(value="Generate", variant="primary")
|
@@ -126,8 +185,11 @@ with gr.Blocks(title="Arabic-ORPO-Llama3") as demo:
|
|
126 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top-p", step=0.01)
|
127 |
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
132 |
|
133 |
-
demo.launch()
|
|
|
4 |
import gradio as gr
|
5 |
from threading import Thread
|
6 |
|
7 |
+
models_available = [
|
8 |
+
"MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct",
|
9 |
+
"silma-ai/SILMA-9B-Instruct-v0.1.1",
|
10 |
+
"inceptionai/jais-adapted-7b-chat",
|
11 |
+
"inceptionai/jais-adapted-13b-chat",
|
12 |
+
"inceptionai/jais-family-6p7b-chat",
|
13 |
+
"inceptionai/jais-family-13b-chat",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
]
|
15 |
|
16 |
+
# Loop over all models to download them
|
17 |
+
for model_id in models_available:
|
18 |
+
try:
|
19 |
+
AutoTokenizer.from_pretrained(model_id)
|
20 |
+
AutoModelForCausalLM.from_pretrained(model_id)
|
21 |
+
except:
|
22 |
+
models_available.remove(model_id)
|
23 |
+
|
24 |
+
tokenizer_a, model_a = None, None
|
25 |
+
tokenizer_b, model_b = None, None
|
26 |
+
|
27 |
+
def load_model_a(model_id):
|
28 |
+
global tokenizer_a, model_a
|
29 |
+
tokenizer_a = AutoTokenizer.from_pretrained(model_id)
|
30 |
+
print(f"model A: {tokenizer_a.eos_token}")
|
31 |
+
try:
|
32 |
+
model_a = AutoModelForCausalLM.from_pretrained(
|
33 |
+
model_id,
|
34 |
+
torch_dtype=torch.bfloat16,
|
35 |
+
device_map="auto",
|
36 |
+
attn_implementation="flash_attention_2",
|
37 |
+
trust_remote_code=True,
|
38 |
+
).eval()
|
39 |
+
except:
|
40 |
+
print(f"Using default attention implementation in {model_id}")
|
41 |
+
model_a = AutoModelForCausalLM.from_pretrained(
|
42 |
+
model_id,
|
43 |
+
torch_dtype=torch.bfloat16,
|
44 |
+
device_map="auto",
|
45 |
+
trust_remote_code=True,
|
46 |
+
).eval()
|
47 |
+
return gr.update(label=model_id)
|
48 |
+
|
49 |
+
def load_model_b(model_id):
|
50 |
+
global tokenizer_b, model_b
|
51 |
+
tokenizer_b = AutoTokenizer.from_pretrained(model_id)
|
52 |
+
print(f"model B: {tokenizer_b.eos_token}")
|
53 |
+
try:
|
54 |
+
model_b = AutoModelForCausalLM.from_pretrained(
|
55 |
+
model_id,
|
56 |
+
torch_dtype=torch.bfloat16,
|
57 |
+
device_map="auto",
|
58 |
+
attn_implementation="flash_attention_2",
|
59 |
+
trust_remote_code=True,
|
60 |
+
).eval()
|
61 |
+
except:
|
62 |
+
print(f"Using default attention implementation in {model_id}")
|
63 |
+
model_b = AutoModelForCausalLM.from_pretrained(
|
64 |
+
model_id,
|
65 |
+
torch_dtype=torch.bfloat16,
|
66 |
+
device_map="auto",
|
67 |
+
trust_remote_code=True,
|
68 |
+
).eval()
|
69 |
+
return gr.update(label=model_id)
|
70 |
+
|
71 |
@spaces.GPU(duration=120)
|
72 |
+
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
|
73 |
+
text_streamer_a = TextIteratorStreamer(tokenizer_a, skip_prompt=True)
|
74 |
+
text_streamer_b = TextIteratorStreamer(tokenizer_b, skip_prompt=True)
|
75 |
|
76 |
system_prompt_list = [{"role": "system", "content": system_prompt}]
|
77 |
input_text_list = [{"role": "user", "content": input_text}]
|
78 |
|
79 |
+
chat_history_a = []
|
80 |
+
for user, assistant in chatbot_a:
|
81 |
+
chat_history_a.append({"role": "user", "content": user})
|
82 |
+
chat_history_a.append({"role": "assistant", "content": assistant})
|
83 |
|
84 |
+
chat_history_b = []
|
85 |
+
for user, assistant in chatbot_b:
|
86 |
+
chat_history_b.append({"role": "user", "content": user})
|
87 |
+
chat_history_b.append({"role": "assistant", "content": assistant})
|
88 |
|
89 |
+
base_messages = system_prompt_list + chat_history_a + input_text_list
|
90 |
+
new_messages = system_prompt_list + chat_history_b + input_text_list
|
91 |
|
92 |
+
input_ids_a = tokenizer_a.apply_chat_template(
|
93 |
base_messages,
|
94 |
add_generation_prompt=True,
|
95 |
return_tensors="pt"
|
96 |
+
).to(model_a.device)
|
97 |
|
98 |
+
input_ids_b = tokenizer_b.apply_chat_template(
|
99 |
new_messages,
|
100 |
add_generation_prompt=True,
|
101 |
return_tensors="pt"
|
102 |
+
).to(model_b.device)
|
103 |
|
104 |
+
generation_kwargs_a = dict(
|
105 |
+
input_ids=input_ids_a,
|
106 |
+
streamer=text_streamer_a,
|
107 |
max_new_tokens=max_new_tokens,
|
108 |
+
pad_token_id=tokenizer_a.eos_token_id,
|
|
|
109 |
do_sample=True if temperature > 0 else False,
|
110 |
temperature=temperature,
|
111 |
top_p=top_p,
|
112 |
repetition_penalty=repetition_penalty,
|
113 |
)
|
114 |
+
generation_kwargs_b = dict(
|
115 |
+
input_ids=input_ids_b,
|
116 |
+
streamer=text_streamer_b,
|
117 |
max_new_tokens=max_new_tokens,
|
118 |
+
pad_token_id=tokenizer_b.eos_token_id,
|
|
|
119 |
do_sample=True if temperature > 0 else False,
|
120 |
temperature=temperature,
|
121 |
top_p=top_p,
|
122 |
repetition_penalty=repetition_penalty,
|
123 |
)
|
124 |
|
125 |
+
thread_a = Thread(target=model_a.generate, kwargs=generation_kwargs_a)
|
126 |
+
thread_b = Thread(target=model_b.generate, kwargs=generation_kwargs_b)
|
127 |
+
|
128 |
+
thread_a.start()
|
129 |
+
thread_b.start()
|
130 |
+
|
131 |
+
chatbot_a.append([input_text, ""])
|
132 |
+
chatbot_b.append([input_text, ""])
|
133 |
+
|
134 |
+
finished_a = False
|
135 |
+
finished_b = False
|
136 |
+
|
137 |
+
while not (finished_a and finished_b):
|
138 |
+
if not finished_a:
|
139 |
+
try:
|
140 |
+
text_a = next(text_streamer_a)
|
141 |
+
if tokenizer_a.eos_token in text_a:
|
142 |
+
eot_location = text_a.find(tokenizer_a.eos_token)
|
143 |
+
text_a = text_a[:eot_location]
|
144 |
+
finished_a = True
|
145 |
+
chatbot_a[-1][-1] += text_a
|
146 |
+
yield chatbot_a, chatbot_b
|
147 |
+
except StopIteration:
|
148 |
+
finished_a = True
|
149 |
+
|
150 |
+
if not finished_b:
|
151 |
+
try:
|
152 |
+
text_b = next(text_streamer_b)
|
153 |
+
if tokenizer_b.eos_token in text_b:
|
154 |
+
eot_location = text_b.find(tokenizer_b.eos_token)
|
155 |
+
text_b = text_b[:eot_location]
|
156 |
+
finished_b = True
|
157 |
+
chatbot_b[-1][-1] += text_b
|
158 |
+
yield chatbot_a, chatbot_b
|
159 |
+
except StopIteration:
|
160 |
+
finished_b = True
|
161 |
+
|
162 |
+
return chatbot_a, chatbot_b
|
163 |
|
164 |
def clear():
|
165 |
return [], []
|
|
|
169 |
gr.HTML("<center><h1>Arabic Chatbot Comparison</h1></center>")
|
170 |
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="أنت متحدث لبق باللغة العربية!", rtl=True, text_align="right", show_copy_button=True)
|
171 |
with gr.Row(variant="panel"):
|
172 |
+
model_dropdown_a = gr.Dropdown(label="Model A", choices=models_available, value=None)
|
173 |
+
model_dropdown_b = gr.Dropdown(label="Model B", choices=models_available, value=None)
|
174 |
+
with gr.Row(variant="panel"):
|
175 |
+
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
|
176 |
+
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
|
177 |
with gr.Row(variant="panel"):
|
178 |
with gr.Column(scale=1):
|
179 |
submit_btn = gr.Button(value="Generate", variant="primary")
|
|
|
185 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top-p", step=0.01)
|
186 |
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
|
187 |
|
188 |
+
model_dropdown_a.change(load_model_a, inputs=[model_dropdown_a], outputs=[chatbot_a])
|
189 |
+
model_dropdown_b.change(load_model_b, inputs=[model_dropdown_b], outputs=[chatbot_b])
|
190 |
+
|
191 |
+
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
192 |
+
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
193 |
+
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
|
194 |
|
195 |
+
demo.launch()
|