Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
689e677
1
Parent(s):
87af913
Update SDK version, remove FluxPipeline, and clean up requirements
Browse files- README.md +1 -1
- app.py +1 -9
- live_preview_helpers.py +0 -165
- requirements.txt +0 -5
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 👀
|
|
4 |
colorFrom: gray
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: Tool to generate 3D assets for games
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.8.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
short_description: Tool to generate 3D assets for games
|
app.py
CHANGED
@@ -15,16 +15,10 @@ from trellis.pipelines import TrellisImageTo3DPipeline
|
|
15 |
from trellis.representations import Gaussian, MeshExtractResult
|
16 |
from trellis.utils import render_utils, postprocessing_utils
|
17 |
from gradio_client import Client
|
18 |
-
from diffusers import FluxPipeline
|
19 |
-
from huggingface_hub import InferenceClient
|
20 |
|
21 |
llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
|
22 |
t2i_client = Client("black-forest-labs/FLUX.1-dev")
|
23 |
|
24 |
-
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
-
# pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cpu")
|
26 |
-
# print(f"Flux pipeline loaded on {pipe.device}")
|
27 |
-
|
28 |
def generate_t2i_prompt(item_name):
|
29 |
llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
|
30 |
|
@@ -71,8 +65,6 @@ def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]:
|
|
71 |
return trial_id, processed_image
|
72 |
|
73 |
def generate_item_image(object_t2i_prompt):
|
74 |
-
# image = pipe(prompt=object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024, generator=torch.Generator("cpu").manual_seed(0), output_type="pil").images[0]
|
75 |
-
# image = client.text_to_image(object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=1024, height=1024)
|
76 |
img_path = t2i_client.predict(
|
77 |
prompt=object_t2i_prompt,
|
78 |
seed=0,
|
@@ -218,7 +210,7 @@ with gr.Blocks(title="Game Items Generator") as demo:
|
|
218 |
|
219 |
with gr.Row():
|
220 |
with gr.Column():
|
221 |
-
with gr.Row():
|
222 |
item_text_field = gr.Textbox(label="Item Name", placeholder="Enter the name of the item", lines=2, scale=4)
|
223 |
enhance_prompt_btn = gr.Button("Enhance Prompt", variant="primary", scale=1)
|
224 |
generate_image_btn = gr.Button("Generate Image", variant="primary")
|
|
|
15 |
from trellis.representations import Gaussian, MeshExtractResult
|
16 |
from trellis.utils import render_utils, postprocessing_utils
|
17 |
from gradio_client import Client
|
|
|
|
|
18 |
|
19 |
llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
|
20 |
t2i_client = Client("black-forest-labs/FLUX.1-dev")
|
21 |
|
|
|
|
|
|
|
|
|
22 |
def generate_t2i_prompt(item_name):
|
23 |
llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
|
24 |
|
|
|
65 |
return trial_id, processed_image
|
66 |
|
67 |
def generate_item_image(object_t2i_prompt):
|
|
|
|
|
68 |
img_path = t2i_client.predict(
|
69 |
prompt=object_t2i_prompt,
|
70 |
seed=0,
|
|
|
210 |
|
211 |
with gr.Row():
|
212 |
with gr.Column():
|
213 |
+
with gr.Row(equal_height=True):
|
214 |
item_text_field = gr.Textbox(label="Item Name", placeholder="Enter the name of the item", lines=2, scale=4)
|
215 |
enhance_prompt_btn = gr.Button("Enhance Prompt", variant="primary", scale=1)
|
216 |
generate_image_btn = gr.Button("Generate Image", variant="primary")
|
live_preview_helpers.py
DELETED
@@ -1,165 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
from typing import Any, Dict, List, Optional, Union
|
4 |
-
|
5 |
-
# Helper functions
|
6 |
-
def calculate_shift(
|
7 |
-
image_seq_len,
|
8 |
-
base_seq_len: int = 256,
|
9 |
-
max_seq_len: int = 4096,
|
10 |
-
base_shift: float = 0.5,
|
11 |
-
max_shift: float = 1.16,
|
12 |
-
):
|
13 |
-
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
14 |
-
b = base_shift - m * base_seq_len
|
15 |
-
mu = image_seq_len * m + b
|
16 |
-
return mu
|
17 |
-
|
18 |
-
def retrieve_timesteps(
|
19 |
-
scheduler,
|
20 |
-
num_inference_steps: Optional[int] = None,
|
21 |
-
device: Optional[Union[str, torch.device]] = None,
|
22 |
-
timesteps: Optional[List[int]] = None,
|
23 |
-
sigmas: Optional[List[float]] = None,
|
24 |
-
**kwargs,
|
25 |
-
):
|
26 |
-
if timesteps is not None and sigmas is not None:
|
27 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
28 |
-
if timesteps is not None:
|
29 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
30 |
-
timesteps = scheduler.timesteps
|
31 |
-
num_inference_steps = len(timesteps)
|
32 |
-
elif sigmas is not None:
|
33 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
34 |
-
timesteps = scheduler.timesteps
|
35 |
-
num_inference_steps = len(timesteps)
|
36 |
-
else:
|
37 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
38 |
-
timesteps = scheduler.timesteps
|
39 |
-
return timesteps, num_inference_steps
|
40 |
-
|
41 |
-
# FLUX pipeline function
|
42 |
-
@torch.inference_mode()
|
43 |
-
def flux_pipe_call_that_returns_an_iterable_of_images(
|
44 |
-
self,
|
45 |
-
prompt: Union[str, List[str]] = None,
|
46 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
47 |
-
height: Optional[int] = None,
|
48 |
-
width: Optional[int] = None,
|
49 |
-
num_inference_steps: int = 28,
|
50 |
-
timesteps: List[int] = None,
|
51 |
-
guidance_scale: float = 3.5,
|
52 |
-
num_images_per_prompt: Optional[int] = 1,
|
53 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
54 |
-
latents: Optional[torch.FloatTensor] = None,
|
55 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
56 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
57 |
-
output_type: Optional[str] = "pil",
|
58 |
-
return_dict: bool = True,
|
59 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
60 |
-
max_sequence_length: int = 512,
|
61 |
-
good_vae: Optional[Any] = None,
|
62 |
-
):
|
63 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
64 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
65 |
-
|
66 |
-
# 1. Check inputs
|
67 |
-
self.check_inputs(
|
68 |
-
prompt,
|
69 |
-
prompt_2,
|
70 |
-
height,
|
71 |
-
width,
|
72 |
-
prompt_embeds=prompt_embeds,
|
73 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
74 |
-
max_sequence_length=max_sequence_length,
|
75 |
-
)
|
76 |
-
|
77 |
-
self._guidance_scale = guidance_scale
|
78 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
79 |
-
self._interrupt = False
|
80 |
-
|
81 |
-
# 2. Define call parameters
|
82 |
-
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
83 |
-
device = self._execution_device
|
84 |
-
|
85 |
-
# 3. Encode prompt
|
86 |
-
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
87 |
-
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
88 |
-
prompt=prompt,
|
89 |
-
prompt_2=prompt_2,
|
90 |
-
prompt_embeds=prompt_embeds,
|
91 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
92 |
-
device=device,
|
93 |
-
num_images_per_prompt=num_images_per_prompt,
|
94 |
-
max_sequence_length=max_sequence_length,
|
95 |
-
lora_scale=lora_scale,
|
96 |
-
)
|
97 |
-
# 4. Prepare latent variables
|
98 |
-
num_channels_latents = self.transformer.config.in_channels // 4
|
99 |
-
latents, latent_image_ids = self.prepare_latents(
|
100 |
-
batch_size * num_images_per_prompt,
|
101 |
-
num_channels_latents,
|
102 |
-
height,
|
103 |
-
width,
|
104 |
-
prompt_embeds.dtype,
|
105 |
-
device,
|
106 |
-
generator,
|
107 |
-
latents,
|
108 |
-
)
|
109 |
-
# 5. Prepare timesteps
|
110 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
111 |
-
image_seq_len = latents.shape[1]
|
112 |
-
mu = calculate_shift(
|
113 |
-
image_seq_len,
|
114 |
-
self.scheduler.config.base_image_seq_len,
|
115 |
-
self.scheduler.config.max_image_seq_len,
|
116 |
-
self.scheduler.config.base_shift,
|
117 |
-
self.scheduler.config.max_shift,
|
118 |
-
)
|
119 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
120 |
-
self.scheduler,
|
121 |
-
num_inference_steps,
|
122 |
-
device,
|
123 |
-
timesteps,
|
124 |
-
sigmas,
|
125 |
-
mu=mu,
|
126 |
-
)
|
127 |
-
self._num_timesteps = len(timesteps)
|
128 |
-
|
129 |
-
# Handle guidance
|
130 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
131 |
-
|
132 |
-
# 6. Denoising loop
|
133 |
-
for i, t in enumerate(timesteps):
|
134 |
-
if self.interrupt:
|
135 |
-
continue
|
136 |
-
|
137 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
138 |
-
|
139 |
-
noise_pred = self.transformer(
|
140 |
-
hidden_states=latents,
|
141 |
-
timestep=timestep / 1000,
|
142 |
-
guidance=guidance,
|
143 |
-
pooled_projections=pooled_prompt_embeds,
|
144 |
-
encoder_hidden_states=prompt_embeds,
|
145 |
-
txt_ids=text_ids,
|
146 |
-
img_ids=latent_image_ids,
|
147 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
148 |
-
return_dict=False,
|
149 |
-
)[0]
|
150 |
-
# Yield intermediate result
|
151 |
-
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
152 |
-
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
153 |
-
image = self.vae.decode(latents_for_image, return_dict=False)[0]
|
154 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
155 |
-
|
156 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
157 |
-
torch.cuda.empty_cache()
|
158 |
-
|
159 |
-
# Final image using good_vae
|
160 |
-
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
161 |
-
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
|
162 |
-
image = good_vae.decode(latents, return_dict=False)[0]
|
163 |
-
self.maybe_free_model_hooks()
|
164 |
-
torch.cuda.empty_cache()
|
165 |
-
yield self.image_processor.postprocess(image, output_type=output_type)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,11 +1,6 @@
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
2 |
--find-links https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.4.0_cu121.html
|
3 |
|
4 |
-
accelerate
|
5 |
-
sentencepiece
|
6 |
-
diffusers
|
7 |
-
gradio_client==1.4.0
|
8 |
-
huggingface-hub==0.26.5
|
9 |
torch==2.4.0
|
10 |
torchvision==0.19.0
|
11 |
pillow==10.4.0
|
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cu121
|
2 |
--find-links https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.4.0_cu121.html
|
3 |
|
|
|
|
|
|
|
|
|
|
|
4 |
torch==2.4.0
|
5 |
torchvision==0.19.0
|
6 |
pillow==10.4.0
|