File size: 9,466 Bytes
a26f93a
b35040f
 
 
 
 
 
 
 
c3ffb57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec99653
b35040f
 
 
 
 
 
 
 
 
ec99653
 
 
 
 
 
 
 
 
 
 
 
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e452575
 
 
 
 
 
 
b35040f
 
 
9801a70
b35040f
e452575
 
 
b35040f
 
e452575
375c73a
b35040f
 
 
e452575
b35040f
e452575
b35040f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a26f93a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import spaces
from snac import SNAC
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
from dotenv import load_dotenv
load_dotenv()

# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"

print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)

model_name = "canopylabs/orpheus-3b-0.1-ft"

# Download only model config and safetensors
snapshot_download(
    repo_id=model_name,
    allow_patterns=[
        "config.json",
        "*.safetensors",
        "model.safetensors.index.json",
    ],
    ignore_patterns=[
        "optimizer.pt",
        "pytorch_model.bin",
        "training_args.bin",
        "scheduler.pt",
        "tokenizer.json",
        "tokenizer_config.json",
        "special_tokens_map.json",
        "vocab.json",
        "merges.txt",
        "tokenizer.*"
    ]
)

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
print(f"Orpheus model loaded to {device}")

# Process text prompt
def process_prompt(prompt, voice, tokenizer, device):
    prompt = f"{voice}: {prompt}"
    input_ids = tokenizer(prompt, return_tensors="pt").input_ids
    
    start_token = torch.tensor([[128259]], dtype=torch.int64)  # Start of human
    end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64)  # End of text, End of human
    
    modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)  # SOH SOT Text EOT EOH
    
    # No padding needed for single input
    attention_mask = torch.ones_like(modified_input_ids)
    
    return modified_input_ids.to(device), attention_mask.to(device)

# Parse output tokens to audio
def parse_output(generated_ids):
    token_to_find = 128257
    token_to_remove = 128258
    
    token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)

    if len(token_indices[1]) > 0:
        last_occurrence_idx = token_indices[1][-1].item()
        cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
    else:
        cropped_tensor = generated_ids

    processed_rows = []
    for row in cropped_tensor:
        masked_row = row[row != token_to_remove]
        processed_rows.append(masked_row)

    code_lists = []
    for row in processed_rows:
        row_length = row.size(0)
        new_length = (row_length // 7) * 7
        trimmed_row = row[:new_length]
        trimmed_row = [t - 128266 for t in trimmed_row]
        code_lists.append(trimmed_row)
        
    return code_lists[0]  # Return just the first one for single sample

# Redistribute codes for audio generation
def redistribute_codes(code_list, snac_model):
    device = next(snac_model.parameters()).device  # Get the device of SNAC model
    
    layer_1 = []
    layer_2 = []
    layer_3 = []
    for i in range((len(code_list)+1)//7):
        layer_1.append(code_list[7*i])
        layer_2.append(code_list[7*i+1]-4096)
        layer_3.append(code_list[7*i+2]-(2*4096))
        layer_3.append(code_list[7*i+3]-(3*4096))
        layer_2.append(code_list[7*i+4]-(4*4096))
        layer_3.append(code_list[7*i+5]-(5*4096))
        layer_3.append(code_list[7*i+6]-(6*4096))
        
    # Move tensors to the same device as the SNAC model
    codes = [
        torch.tensor(layer_1, device=device).unsqueeze(0),
        torch.tensor(layer_2, device=device).unsqueeze(0),
        torch.tensor(layer_3, device=device).unsqueeze(0)
    ]
    
    audio_hat = snac_model.decode(codes)
    return audio_hat.detach().squeeze().cpu().numpy()  # Always return CPU numpy array

# Main generation function
@spaces.GPU()
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
    if not text.strip():
        return None
    
    try:
        progress(0.1, "Processing text...")
        input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
        
        progress(0.3, "Generating speech tokens...")
        with torch.no_grad():
            generated_ids = model.generate(
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_new_tokens=max_new_tokens,
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                repetition_penalty=repetition_penalty,
                num_return_sequences=1,
                eos_token_id=128258,
            )
        
        progress(0.6, "Processing speech tokens...")
        code_list = parse_output(generated_ids)
        
        progress(0.8, "Converting to audio...")
        audio_samples = redistribute_codes(code_list, snac_model)
        
        return (24000, audio_samples)  # Return sample rate and audio
    except Exception as e:
        print(f"Error generating speech: {e}")
        return None

# Examples for the UI
examples = [
    ["Hey there my name is Tara, <chuckle> and I'm a speech generation model that can sound like a person.", "tara", 0.6, 0.95, 1.1, 1200],
    ["I've also been taught to understand and produce paralinguistic things <sigh> like sighing, or <laugh> laughing, or <yawn> yawning!", "dan", 0.7, 0.95, 1.1, 1200],
    ["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... <gasp> well, lets just say a lot of parameters.", "leah", 0.6, 0.9, 1.2, 1200],
    ["Sometimes when I talk too much, I need to <cough> excuse myself. <sniffle> The weather has been quite cold lately.", "leo", 0.65, 0.9, 1.1, 1200],
    ["Public speaking can be challenging. <groan> But with enough practice, anyone can become better at it.", "jess", 0.7, 0.95, 1.1, 1200],
    ["The hike was exhausting but the view from the top was absolutely breathtaking! <sigh> It was totally worth it.", "mia", 0.65, 0.9, 1.15, 1200],
    ["Did you hear that joke? <laugh> I couldn't stop laughing when I first heard it. <chuckle> It's still funny.", "zac", 0.7, 0.95, 1.1, 1200],
    ["After running the marathon, I was so tired <yawn> and needed a long rest. <sigh> But I felt accomplished.", "zoe", 0.6, 0.95, 1.1, 1200]
]

# Available voices
VOICES = ["tara", "leah", "jess", "leo", "dan", "mia", "zac", "zoe"]

# Available Emotive Tags
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]

# Create Gradio interface
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
    gr.Markdown(f"""
    # 🎵 [Orpheus Text-to-Speech](https://github.com/canopyai/Orpheus-TTS)
    Enter your text below and hear it converted to natural-sounding speech with the Orpheus TTS model.
    
    ## Tips for better prompts:
    - Add paralinguistic elements like {", ".join(EMOTIVE_TAGS)} or `uhm` for more human-like speech.
    - Longer text prompts generally work better than very short phrases
    - Increasing `repetition_penalty` and `temperature` makes the model speak faster.
    """)    
    with gr.Row():
        with gr.Column(scale=3):
            text_input = gr.Textbox(
                label="Text to speak", 
                placeholder="Enter your text here...",
                lines=5
            )
            voice = gr.Dropdown(
                choices=VOICES, 
                value="tara", 
                label="Voice"
            )
            
            with gr.Accordion("Advanced Settings", open=False):
                temperature = gr.Slider(
                    minimum=0.1, maximum=1.5, value=0.6, step=0.05,
                    label="Temperature", 
                    info="Higher values (0.7-1.0) create more expressive but less stable speech"
                )
                top_p = gr.Slider(
                    minimum=0.1, maximum=1.0, value=0.95, step=0.05,
                    label="Top P", 
                    info="Nucleus sampling threshold"
                )
                repetition_penalty = gr.Slider(
                    minimum=1.0, maximum=2.0, value=1.1, step=0.05,
                    label="Repetition Penalty", 
                    info="Higher values discourage repetitive patterns"
                )
                max_new_tokens = gr.Slider(
                    minimum=100, maximum=2000, value=1200, step=100,
                    label="Max Length", 
                    info="Maximum length of generated audio (in tokens)"
                )
            
            with gr.Row():
                submit_btn = gr.Button("Generate Speech", variant="primary")
                clear_btn = gr.Button("Clear")
                
        with gr.Column(scale=2):
            audio_output = gr.Audio(label="Generated Speech", type="numpy")
            
    # Set up examples
    gr.Examples(
        examples=examples,
        inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
        outputs=audio_output,
        fn=generate_speech,
        cache_examples=True,
    )
    
    # Set up event handlers
    submit_btn.click(
        fn=generate_speech,
        inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
        outputs=audio_output
    )
    
    clear_btn.click(
        fn=lambda: (None, None),
        inputs=[],
        outputs=[text_input, audio_output]
    )

# Launch the app
if __name__ == "__main__":
    demo.queue().launch(share=False, ssr_mode=False)