Arabic-PDF-Chat / app.py
MohammedNasser's picture
Update app.py
3f6273d verified
import gradio as gr
import os
import subprocess
import uuid
import fitz
from dotenv import load_dotenv
from langchain_community.document_loaders import UnstructuredPDFLoader
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import CharacterTextSplitter
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from gtts import gTTS
import sys
import pytesseract
from pdf2image import convert_from_path
from huggingface_hub import Repository, login
from huggingface_hub import hf_hub_download
from langchain.schema import Document
from PyPDF2 import PdfReader
from langdetect import detect
# Load environment variables
load_dotenv()
secret_key = os.getenv("GROQ_API_KEY")
hf_key = os.getenv("HF_TOKEN")
os.environ["GROQ_API_KEY"] = secret_key
login(token=hf_key,add_to_git_credential=True)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
# Ensure the necessary folders exist
UPLOAD_FOLDER = 'uploads/'
AUDIO_FOLDER = 'audio/'
for folder in [UPLOAD_FOLDER, AUDIO_FOLDER]:
if not os.path.exists(folder):
os.makedirs(folder)
def load_pdf(file_path):
"""Load and preprocess Arabic text from a PDF file."""
try:
pages = convert_from_path(file_path, 500)
except Exception as e:
print(f"Error loading PDF: {e}")
return []
documents = []
for pageNum, imgBlob in enumerate(pages):
try:
text = pytesseract.image_to_string(imgBlob, lang="ara")
documents.append(text)
except Exception as e:
print(f"Error processing page {pageNum}: {e}")
documents.append("")
return documents
def prepare_vectorstore(data):
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, separator="\n")
# Create Document objects from the input data
documents = [Document(page_content=text) for text in data]
# Split the documents into chunks
chunks = text_splitter.split_documents(documents)
# Create the vector store
vectorstore = FAISS.from_documents(chunks, embeddings)
return vectorstore
def create_chain(vectorstore):
llm = ChatGroq(model="gemma2-9b-it", temperature=0)
retriever = vectorstore.as_retriever()
memory = ConversationBufferMemory(llm=llm, output_key="answer", memory_key="chat_history", return_messages=True)
chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=memory,
verbose=False,
chain_type="map_reduce"
)
return chain
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Noto+Kufi+Arabic:wght@400;700&display=swap');
@import url('https://fonts.googleapis.com/css2?family=Cairo:wght@400;700&display=swap');
body {
font-family: 'Noto Kufi Arabic', sans-serif;
background: linear-gradient(135deg, #799351 0%, #A67B5B 100%);
background-size: cover;
background-position: center;
background-attachment: fixed;
}
.gradio-container {
direction: rtl;
font-family: 'Noto Kufi Arabic', sans-serif;
font-size: 16px;
max-width: 800px !important;
margin: auto !important;
border-radius: 20px;
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
backdrop-filter: blur(4px);
border: 1px solid rgba(255, 255, 255, 0.18);
padding: 20px;
}
.gr-textbox input, .gr-textbox textarea {
text-align: right !important; /* Align text to the right */
direction: rtl !important; /* Set RTL text direction */
font-family: 'Cairo', sans-serif !important;
}
.gr-file, .gr-audio {
text-align: right !important; /* Align text to the right */
direction: rtl !important; /* Set RTL text direction */
}
label {
font-size: 14px !important;
color: #000000 !important;
background-color: #EEEEEE;
}
.arabic-chatbox .message.user {
font-family: 'Cairo', sans-serif !important;
background-color: #FFFBE6;
}
.arabic-chatbox .message.bot {
font-family: 'Cairo', sans-serif !important;
background-color: #E7FBE6;
}
#custom-logo {
display: block;
margin-left: auto;
margin-right: auto;
width: 30px; /* Set custom width */
height: 20px; /* Set custom height */
}
.custom-submit-button {
background-color: #E68369 !important;
border: none !important;
border-radius: 5px !important;
padding: 10px 20px !important;
font-size: 16px !important;
cursor: pointer !important;
}
.custom-submit-button:hover {
background-color: white !important;
color: #E6B9A6 !important;
}
#clear_btn {
background-color: #698474;
color: white;
border: none;
border-radius: 5px;
padding: 10px 20px;
font-size: 16px;
cursor: pointer;
}
#clear_btn:hover {
background-color: white;
color: #698474;
}
"""
# Function to check if the file is a valid PDF in Arabic and less than 10MB
def validate_pdf(pdf):
if pdf is None:
return "لم يتم اختيار أي ملف", False
if not pdf.name.endswith(".pdf"):
return "الملف الذي اخترته ليس PDF", False
if os.path.getsize(pdf.name) > 10 * 1024 * 1024:
return "حجم الملف أكبر من 10 ميجا بايت", False
# Check if PDF content is Arabic
reader = PdfReader(pdf.name)
text = ""
for page in reader.pages:
text += page.extract_text()
try:
if detect(text) != "ar":
return "الملف ليس باللغة العربية", False
except:
return "فشل في تحليل اللغة", False
return "الملف صالح للدردشة", True
def upload_pdf(pdf_file):
global vectorstore, chathistory
chathistory = []
data = load_pdf(pdf_file)
vectorstore = prepare_vectorstore(data)
return "تم تحميل الملف بنجاح !", True
def chat(user_input):
global chathistory, vectorstore
if not user_input.strip(): # Check if the input is empty or contains only whitespace
return gr.update(value='<span style="color:red;">الرجاء إدخال سؤال.</span>'), "", None
prompt = f"""
You are an expert Arabic-language assistant specialized in analyzing and responding to queries about Arabic PDF documents. Your responses should be precise, informative, and reflect the professional tone and structure expected in formal Arabic communication. Focus on extracting and presenting relevant information from the document clearly and systematically, while avoiding colloquial or informal language.
When responding, ensure the following:
- Your answer directly reflects the content of the document.
- If the requested information is not available in the document, clearly state that in Arabic.
- Keep your response concise yet comprehensive, addressing the question fully.
- Respond only in a professional and well-versed Arabic Language.
Question: {user_input}.
"""
chain = create_chain(vectorstore)
response = chain({"question": prompt})
assistant_response = response["answer"]
chathistory.append({"user_content": f"👤 {user_input}", "bot_content": f"🤖 {assistant_response}"})
# Generate a unique identifier for the audio file
audio_id = str(uuid.uuid4())
# Create audio file
tts = gTTS(text=assistant_response, lang='ar')
audio_file = f"{audio_id}.mp3"
tts.save(audio_file)
history_display = [(msg["user_content"], msg["bot_content"]) for msg in chathistory]
return gr.update(value=''), history_display, audio_file
image_path = "logo.png"
with gr.Blocks(css=custom_css) as demo:
with gr.Row():
gr.Image(image_path, show_fullscreen_button=False, show_download_button=False,
show_share_button=False, show_label=False, label='', container=True, height=50, width=50)
with gr.Row():
gr.Markdown("<h1 style='text-align: center;'>المساعد العربي للدردشة 💬</h1>", rtl=True)
with gr.Row():
gr.Markdown("""
<ul style="list-style-type: disc;">
<li style="color: #6C946F; font-size: 12px;">تأكد من اختيار ملف PDF.</li>
<li style="color: #6C946F; font-size: 12px;">حجم الملف يجب أن يكون أقل من 10 ميجابايت.</li>
<li style="color: #6C946F; font-size: 12px;">يجب أن يكون المحتوى باللغة العربية.</li>
</ul>""", rtl=True)
pdf_input = gr.File(label="اختر ملف PDF")
with gr.Row():
output_label = gr.HTML(value='')
with gr.Row():
submit_button_pdf = gr.Button("ارفع الملف", interactive=False, variant='primary')
with gr.Row():
chatbot = gr.Chatbot(label="الشات", height=400, rtl=True, show_copy_all_button=True, layout='bubble', scale=1, bubble_full_width=False)
with gr.Row():
chat_label = gr.HTML(value='')
with gr.Row():
chat_input = gr.Textbox(label="💬", rtl=True, visible=False, placeholder="أدخل سؤالك هنا ..", lines=2)
with gr.Row():
audio_output = gr.Audio(label="🔊", visible=False)
with gr.Row():
submit_button_chat = gr.Button("إرسال", interactive=True, visible=False, elem_classes="custom-submit-button", variant='primary')
with gr.Row():
clear_btn = gr.Button("مسح", interactive=True, visible=False, variant='secondary')
def handle_file_upload(pdf):
output_label.value=''
message, is_valid = validate_pdf(pdf)
color = "red" if not is_valid else "green"
# Update HTML label instead of Textbox
if is_valid:
# Enable the upload button if the file is valid
value=''
return gr.update(value=value), gr.update(interactive=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
else:
value=f'<span style="color:{color}">{message}</span>'
return gr.update(value=value), gr.update(interactive=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def process_pdf_and_enable_components(pdf):
# Process PDF and activate the other components
output_label.value='<span style="color:blue">جاري معالجة الملف...</span>'
message, is_valid = upload_pdf(pdf)
value=f'<span style="color:green">{message}</span>'
return gr.update(value=value), gr.update(visible=True), gr.update(interactive=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
def clear_chat():
return "", None
# When the user uploads a file, validate it and then allow PDF upload
pdf_input.change(handle_file_upload, inputs=pdf_input, outputs=[output_label,submit_button_pdf, submit_button_chat, chatbot, chat_input, audio_output, clear_btn])
# When the user presses the upload button, process the PDF and enable other components
submit_button_pdf.click(process_pdf_and_enable_components, inputs=pdf_input, outputs=[output_label, submit_button_chat, submit_button_pdf, chatbot, chat_input, audio_output, clear_btn])
clear_btn.click(clear_chat, outputs=[chat_input, audio_output])
# Chat button connection
submit_button_chat.click(chat, inputs=chat_input, outputs=[chat_label, chatbot, audio_output])
# Launch the Gradio app
demo.launch(inbrowser=True)