Spaces:
Sleeping
Sleeping
MohammedNasser
commited on
Commit
•
bf18e69
1
Parent(s):
3ba55e9
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,55 @@
|
|
|
|
1 |
import os
|
2 |
import fitz
|
3 |
from dotenv import load_dotenv
|
4 |
from langchain_community.document_loaders import UnstructuredPDFLoader
|
5 |
from langchain_community.vectorstores import FAISS
|
6 |
-
from
|
7 |
-
|
8 |
from langchain_text_splitters import CharacterTextSplitter
|
9 |
from langchain_groq import ChatGroq
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
12 |
-
from pdf2image import convert_from_path
|
13 |
-
import pytesseract
|
14 |
from gtts import gTTS
|
15 |
-
import
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
# Load environment variables
|
21 |
load_dotenv()
|
22 |
secret_key = os.getenv("GROQ_API_KEY")
|
23 |
|
24 |
os.environ["GROQ_API_KEY"] = secret_key
|
25 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
26 |
-
|
27 |
-
# File directories
|
28 |
UPLOAD_FOLDER = 'uploads/'
|
29 |
-
AUDIO_FOLDER = '
|
30 |
-
|
31 |
-
# Ensure directories exist
|
32 |
for folder in [UPLOAD_FOLDER, AUDIO_FOLDER]:
|
33 |
if not os.path.exists(folder):
|
34 |
os.makedirs(folder)
|
35 |
|
|
|
36 |
def load_pdf(file_path):
|
37 |
-
"""
|
38 |
-
Load and preprocess Arabic text from a PDF file.
|
39 |
-
"""
|
40 |
pages = convert_from_path(file_path, 500)
|
41 |
documents = []
|
42 |
-
for imgBlob in pages:
|
43 |
-
# Perform OCR on each image
|
44 |
text = pytesseract.image_to_string(imgBlob, lang="ara")
|
45 |
documents.append(text)
|
46 |
return documents
|
@@ -49,10 +58,7 @@ def prepare_vectorstore(data):
|
|
49 |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, separator="\n")
|
50 |
texts = data
|
51 |
vectorstore = FAISS.from_texts(texts, embeddings)
|
52 |
-
|
53 |
-
# Save FAISS index to disk
|
54 |
vectorstore.save_local("faiss_index")
|
55 |
-
|
56 |
return vectorstore
|
57 |
|
58 |
def load_vectorstore():
|
@@ -73,73 +79,138 @@ def create_chain(vectorstore):
|
|
73 |
return chain
|
74 |
|
75 |
def process_pdf(pdf_file):
|
76 |
-
|
77 |
-
|
78 |
-
pdf_file.
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
- Keep your response concise yet comprehensive, addressing the question fully.
|
100 |
-
- Always respond in formal Arabic, without using English.\n
|
101 |
-
|
102 |
-
Question: {user_input}\n
|
103 |
-
Helpful Answer:"""
|
104 |
-
|
105 |
response = chain({"question": prompt})
|
106 |
assistant_response = response["answer"]
|
107 |
-
|
108 |
-
# Generate
|
109 |
-
audio_id = str(uuid.uuid4())
|
110 |
-
audio_file = f"{audio_id}.mp3"
|
111 |
tts = gTTS(text=assistant_response, lang='ar')
|
|
|
112 |
tts.save(os.path.join(AUDIO_FOLDER, audio_file))
|
113 |
|
114 |
-
return assistant_response,
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
with gr.Row():
|
131 |
-
pdf_input = gr.File(label="اختر ملف
|
|
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
|
|
|
144 |
|
145 |
demo.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
import os
|
3 |
import fitz
|
4 |
from dotenv import load_dotenv
|
5 |
from langchain_community.document_loaders import UnstructuredPDFLoader
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
8 |
from langchain_text_splitters import CharacterTextSplitter
|
9 |
from langchain_groq import ChatGroq
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
|
12 |
from gtts import gTTS
|
13 |
+
import sys
|
14 |
+
|
15 |
+
try:
|
16 |
+
import pytesseract
|
17 |
+
from pdf2image import convert_from_path
|
18 |
+
except ImportError as e:
|
19 |
+
print(f"Error: {e}. Please make sure all system dependencies are installed.")
|
20 |
+
sys.exit(1)
|
21 |
+
|
22 |
+
# Rest of your imports...
|
23 |
+
|
24 |
+
# Set the Tesseract path
|
25 |
+
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'
|
26 |
+
|
27 |
+
# Test Tesseract installation
|
28 |
+
try:
|
29 |
+
pytesseract.get_languages()
|
30 |
+
except pytesseract.TesseractNotFoundError:
|
31 |
+
print("Error: Tesseract is not installed or not in the system PATH.")
|
32 |
+
sys.exit(1)
|
33 |
+
|
34 |
# Load environment variables
|
35 |
load_dotenv()
|
36 |
secret_key = os.getenv("GROQ_API_KEY")
|
37 |
|
38 |
os.environ["GROQ_API_KEY"] = secret_key
|
39 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
40 |
+
# Ensure the necessary folders exist
|
|
|
41 |
UPLOAD_FOLDER = 'uploads/'
|
42 |
+
AUDIO_FOLDER = 'audio/'
|
|
|
|
|
43 |
for folder in [UPLOAD_FOLDER, AUDIO_FOLDER]:
|
44 |
if not os.path.exists(folder):
|
45 |
os.makedirs(folder)
|
46 |
|
47 |
+
|
48 |
def load_pdf(file_path):
|
49 |
+
"""Load and preprocess Arabic text from a PDF file."""
|
|
|
|
|
50 |
pages = convert_from_path(file_path, 500)
|
51 |
documents = []
|
52 |
+
for pageNum, imgBlob in enumerate(pages):
|
|
|
53 |
text = pytesseract.image_to_string(imgBlob, lang="ara")
|
54 |
documents.append(text)
|
55 |
return documents
|
|
|
58 |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, separator="\n")
|
59 |
texts = data
|
60 |
vectorstore = FAISS.from_texts(texts, embeddings)
|
|
|
|
|
61 |
vectorstore.save_local("faiss_index")
|
|
|
62 |
return vectorstore
|
63 |
|
64 |
def load_vectorstore():
|
|
|
79 |
return chain
|
80 |
|
81 |
def process_pdf(pdf_file):
|
82 |
+
file_path = os.path.join(UPLOAD_FOLDER, pdf_file.name)
|
83 |
+
with open(file_path, "wb") as f:
|
84 |
+
f.write(pdf_file.read())
|
85 |
+
data = load_pdf(file_path)
|
86 |
+
vectorstore = prepare_vectorstore(data)
|
87 |
+
return "PDF processed successfully. You can now start chatting!"
|
88 |
+
|
89 |
+
def chat(user_input, history):
|
90 |
+
vectorstore = load_vectorstore()
|
91 |
+
chain = create_chain(vectorstore)
|
92 |
+
|
93 |
+
prompt = f"""
|
94 |
+
You are an expert Arabic-language assistant specialized in analyzing and responding to queries about Arabic PDF documents. Your responses should be precise, informative, and reflect the professional tone and structure expected in formal Arabic communication. Focus on extracting and presenting relevant information from the document clearly and systematically, while avoiding colloquial or informal language.
|
95 |
+
|
96 |
+
When responding, ensure the following:
|
97 |
+
- Your answer directly reflects the content of the document.
|
98 |
+
- If the requested information is not available in the document, clearly state that.
|
99 |
+
- Keep your response concise yet comprehensive, addressing the question fully.
|
100 |
+
- Always respond in formal Arabic, without using English.
|
101 |
+
|
102 |
+
Question: {user_input}
|
103 |
+
Helpful Answer:"""
|
104 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
response = chain({"question": prompt})
|
106 |
assistant_response = response["answer"]
|
107 |
+
|
108 |
+
# Generate audio file
|
|
|
|
|
109 |
tts = gTTS(text=assistant_response, lang='ar')
|
110 |
+
audio_file = f"response_{len(history)}.mp3"
|
111 |
tts.save(os.path.join(AUDIO_FOLDER, audio_file))
|
112 |
|
113 |
+
return assistant_response, audio_file
|
114 |
+
|
115 |
+
custom_css = """
|
116 |
+
body {
|
117 |
+
font-family: 'Noto Kufi Arabic', sans-serif;
|
118 |
+
background: linear-gradient(135deg, #799351 0%, #A67B5B 100%);
|
119 |
+
background-size: cover;
|
120 |
+
background-position: center;
|
121 |
+
background-attachment: fixed;
|
122 |
+
}
|
123 |
+
|
124 |
+
.gradio-container {
|
125 |
+
max-width: 800px !important;
|
126 |
+
margin: auto !important;
|
127 |
+
background: rgba(255, 255, 255, 0.9);
|
128 |
+
border-radius: 20px;
|
129 |
+
box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37);
|
130 |
+
backdrop-filter: blur(4px);
|
131 |
+
border: 1px solid rgba(255, 255, 255, 0.18);
|
132 |
+
padding: 20px;
|
133 |
+
}
|
134 |
+
|
135 |
+
h1, h2, h3 {
|
136 |
+
color: #1A4D2E;
|
137 |
+
font-weight: bold;
|
138 |
+
text-align: center;
|
139 |
+
}
|
140 |
+
|
141 |
+
p {
|
142 |
+
color: #A89F91;
|
143 |
+
}
|
144 |
+
|
145 |
+
.gradio-button {
|
146 |
+
background-color: #5F6F65 !important;
|
147 |
+
color: #FFFFFF !important;
|
148 |
+
}
|
149 |
+
|
150 |
+
.gradio-button:hover {
|
151 |
+
background-color: #FFFFFF !important;
|
152 |
+
color: #5F6F65 !important;
|
153 |
+
}
|
154 |
+
|
155 |
+
.chat-message {
|
156 |
+
border-radius: 10px;
|
157 |
+
padding: 10px;
|
158 |
+
margin-bottom: 10px;
|
159 |
+
}
|
160 |
+
|
161 |
+
.chat-message.user {
|
162 |
+
background-color: #E7F0DC;
|
163 |
+
}
|
164 |
+
|
165 |
+
.chat-message.bot {
|
166 |
+
background-color: #F7EED3;
|
167 |
+
}
|
168 |
+
|
169 |
+
.chat-message::before {
|
170 |
+
content: '';
|
171 |
+
display: inline-block;
|
172 |
+
width: 24px;
|
173 |
+
height: 24px;
|
174 |
+
background-size: contain;
|
175 |
+
background-repeat: no-repeat;
|
176 |
+
margin-right: 10px;
|
177 |
+
vertical-align: middle;
|
178 |
+
}
|
179 |
+
|
180 |
+
.chat-message.user::before {
|
181 |
+
content: '👤';
|
182 |
+
}
|
183 |
+
|
184 |
+
.chat-message.bot::before {
|
185 |
+
content: '🤖';
|
186 |
+
}
|
187 |
+
"""
|
188 |
+
# Gradio interface
|
189 |
+
with gr.Blocks(css=custom_css) as demo:
|
190 |
+
gr.Markdown("# ديمو بوت للقاء مركز حضرموت للدراسات التاريخية")
|
191 |
+
gr.Markdown("## المنعقد السبت 14 - سبتمبر 2024")
|
192 |
|
193 |
with gr.Row():
|
194 |
+
pdf_input = gr.File(label="اختر ملف PDF للدردشة")
|
195 |
+
process_button = gr.Button("رفع وبدء الدردشة")
|
196 |
|
197 |
+
chat_interface = gr.ChatInterface(
|
198 |
+
chat,
|
199 |
+
chatbot=gr.Chatbot(height=400),
|
200 |
+
textbox=gr.Textbox(placeholder="اكتب سؤالك هنا...", container=False),
|
201 |
+
title="الدردشة مع البوت",
|
202 |
+
description="اسأل أي سؤال عن محتوى الملف PDF",
|
203 |
+
theme="soft",
|
204 |
+
examples=["ما هو موضوع الوثيقة؟", "من هم الأشخاص المذكورون؟", "ما هي التواريخ الرئيسية المذكورة؟"],
|
205 |
+
cache_examples=True,
|
206 |
+
retry_btn=None,
|
207 |
+
undo_btn="مسح آخر رسالة",
|
208 |
+
clear_btn="مسح المحادثة",
|
209 |
+
)
|
210 |
+
|
211 |
+
audio_output = gr.Audio(label="الرد الصوتي")
|
212 |
|
213 |
+
process_button.click(process_pdf, inputs=[pdf_input], outputs=[chat_interface.textbox])
|
214 |
+
chat_interface.submit(lambda x, y: y[-1][1], inputs=[chat_interface.textbox, chat_interface.chatbot], outputs=[audio_output])
|
215 |
|
216 |
demo.launch()
|