MohammedNasser commited on
Commit
d187736
·
verified ·
1 Parent(s): c98233a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -5,6 +5,9 @@ from dotenv import load_dotenv
5
  from langchain_community.document_loaders import UnstructuredPDFLoader
6
  from langchain_community.vectorstores import FAISS
7
  from langchain_community.embeddings import HuggingFaceEmbeddings
 
 
 
8
  from langchain_text_splitters import CharacterTextSplitter
9
  from langchain_groq import ChatGroq
10
  from langchain.memory import ConversationBufferMemory
@@ -18,6 +21,7 @@ import gradio as gr
18
  # Load environment variables
19
  load_dotenv()
20
  os.environ["GROQ_API_KEY"] = "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"
 
21
 
22
  # File directories
23
  UPLOAD_FOLDER = 'uploads/'
@@ -41,7 +45,6 @@ def load_pdf(file_path):
41
  return documents
42
 
43
  def prepare_vectorstore(data):
44
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
45
  text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, separator="\n")
46
  texts = data
47
  vectorstore = FAISS.from_texts(texts, embeddings)
@@ -52,7 +55,6 @@ def prepare_vectorstore(data):
52
  return vectorstore
53
 
54
  def load_vectorstore():
55
- embeddings = HuggingFaceEmbeddings()
56
  vectorstore = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
57
  return vectorstore
58
 
 
5
  from langchain_community.document_loaders import UnstructuredPDFLoader
6
  from langchain_community.vectorstores import FAISS
7
  from langchain_community.embeddings import HuggingFaceEmbeddings
8
+
9
+ # Define the correct model embedding class
10
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
11
  from langchain_text_splitters import CharacterTextSplitter
12
  from langchain_groq import ChatGroq
13
  from langchain.memory import ConversationBufferMemory
 
21
  # Load environment variables
22
  load_dotenv()
23
  os.environ["GROQ_API_KEY"] = "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"
24
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
25
 
26
  # File directories
27
  UPLOAD_FOLDER = 'uploads/'
 
45
  return documents
46
 
47
  def prepare_vectorstore(data):
 
48
  text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, separator="\n")
49
  texts = data
50
  vectorstore = FAISS.from_texts(texts, embeddings)
 
55
  return vectorstore
56
 
57
  def load_vectorstore():
 
58
  vectorstore = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
59
  return vectorstore
60