Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,9 @@ from dotenv import load_dotenv
|
|
5 |
from langchain_community.document_loaders import UnstructuredPDFLoader
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
|
|
8 |
from langchain_text_splitters import CharacterTextSplitter
|
9 |
from langchain_groq import ChatGroq
|
10 |
from langchain.memory import ConversationBufferMemory
|
@@ -18,6 +21,7 @@ import gradio as gr
|
|
18 |
# Load environment variables
|
19 |
load_dotenv()
|
20 |
os.environ["GROQ_API_KEY"] = "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"
|
|
|
21 |
|
22 |
# File directories
|
23 |
UPLOAD_FOLDER = 'uploads/'
|
@@ -41,7 +45,6 @@ def load_pdf(file_path):
|
|
41 |
return documents
|
42 |
|
43 |
def prepare_vectorstore(data):
|
44 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
45 |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, separator="\n")
|
46 |
texts = data
|
47 |
vectorstore = FAISS.from_texts(texts, embeddings)
|
@@ -52,7 +55,6 @@ def prepare_vectorstore(data):
|
|
52 |
return vectorstore
|
53 |
|
54 |
def load_vectorstore():
|
55 |
-
embeddings = HuggingFaceEmbeddings()
|
56 |
vectorstore = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
57 |
return vectorstore
|
58 |
|
|
|
5 |
from langchain_community.document_loaders import UnstructuredPDFLoader
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
|
9 |
+
# Define the correct model embedding class
|
10 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
11 |
from langchain_text_splitters import CharacterTextSplitter
|
12 |
from langchain_groq import ChatGroq
|
13 |
from langchain.memory import ConversationBufferMemory
|
|
|
21 |
# Load environment variables
|
22 |
load_dotenv()
|
23 |
os.environ["GROQ_API_KEY"] = "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"
|
24 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
25 |
|
26 |
# File directories
|
27 |
UPLOAD_FOLDER = 'uploads/'
|
|
|
45 |
return documents
|
46 |
|
47 |
def prepare_vectorstore(data):
|
|
|
48 |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, separator="\n")
|
49 |
texts = data
|
50 |
vectorstore = FAISS.from_texts(texts, embeddings)
|
|
|
55 |
return vectorstore
|
56 |
|
57 |
def load_vectorstore():
|
|
|
58 |
vectorstore = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
59 |
return vectorstore
|
60 |
|