import gradio as gr import os import subprocess import fitz from dotenv import load_dotenv from langchain_community.document_loaders import UnstructuredPDFLoader from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings from langchain_text_splitters import CharacterTextSplitter from langchain_groq import ChatGroq from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from gtts import gTTS import sys import pytesseract from pdf2image import convert_from_path # Load environment variables load_dotenv() secret_key = os.getenv("GROQ_API_KEY") os.environ["GROQ_API_KEY"] = secret_key embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2") # Ensure the necessary folders exist UPLOAD_FOLDER = 'uploads/' AUDIO_FOLDER = 'audio/' for folder in [UPLOAD_FOLDER, AUDIO_FOLDER]: if not os.path.exists(folder): os.makedirs(folder) def load_pdf(file_path): """Load and preprocess Arabic text from a PDF file.""" pages = convert_from_path(file_path, 500) documents = [] for pageNum, imgBlob in enumerate(pages): text = pytesseract.image_to_string(imgBlob, lang="ara") documents.append(text) return documents def prepare_vectorstore(data): index_dir = "faiss_index" if not os.path.exists(index_dir): os.makedirs(index_dir) text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, separator="\n") texts = data vectorstore = FAISS.from_texts(texts, embeddings) vectorstore.save_local(index_dir) return vectorstore def load_vectorstore(): index_dir = "faiss_index" # Ensure the directory exists before trying to load the index if not os.path.exists(index_dir): raise RuntimeError(f"FAISS index directory '{index_dir}' does not exist.") vectorstore = FAISS.load_local(index_dir, embeddings, allow_dangerous_deserialization=True) return vectorstore def create_chain(vectorstore): llm = ChatGroq(model="gemma2-9b-it", temperature=0) retriever = vectorstore.as_retriever() memory = ConversationBufferMemory(llm=llm, output_key="answer", memory_key="chat_history", return_messages=True) chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=retriever, memory=memory, verbose=False, chain_type="map_reduce" ) return chain def process_pdf(pdf_file): file_path = os.path.join(UPLOAD_FOLDER, pdf_file.name) with open(file_path, "wb") as f: f.write(pdf_file.read()) data = load_pdf(file_path) vectorstore = prepare_vectorstore(data) return "PDF processed successfully. You can now start chatting!" def chat(user_input, history): vectorstore = load_vectorstore() chain = create_chain(vectorstore) prompt = f""" You are an expert Arabic-language assistant specialized in analyzing and responding to queries about Arabic PDF documents. Your responses should be precise, informative, and reflect the professional tone and structure expected in formal Arabic communication. Focus on extracting and presenting relevant information from the document clearly and systematically, while avoiding colloquial or informal language. When responding, ensure the following: - Your answer directly reflects the content of the document. - If the requested information is not available in the document, clearly state that. - Keep your response concise yet comprehensive, addressing the question fully. - Always respond in formal Arabic, without using English. Question: {user_input} Helpful Answer:""" response = chain({"question": prompt}) assistant_response = response["answer"] # Generate audio file tts = gTTS(text=assistant_response, lang='ar') audio_file = f"response_{len(history)}.mp3" tts.save(os.path.join(AUDIO_FOLDER, audio_file)) return assistant_response, audio_file custom_css = """ body { font-family: 'Noto Kufi Arabic', sans-serif; background: linear-gradient(135deg, #799351 0%, #A67B5B 100%); background-size: cover; background-position: center; background-attachment: fixed; } .gradio-container { max-width: 800px !important; margin: auto !important; background: rgba(255, 255, 255, 0.9); border-radius: 20px; box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37); backdrop-filter: blur(4px); border: 1px solid rgba(255, 255, 255, 0.18); padding: 20px; } h1, h2, h3 { color: #1A4D2E; font-weight: bold; text-align: center; } p { color: #A89F91; } .gradio-button { background-color: #5F6F65 !important; color: #FFFFFF !important; } .gradio-button:hover { background-color: #FFFFFF !important; color: #5F6F65 !important; } .chat-message { border-radius: 10px; padding: 10px; margin-bottom: 10px; } .chat-message.user { background-color: #E7F0DC; } .chat-message.bot { background-color: #F7EED3; } .chat-message::before { content: ''; display: inline-block; width: 24px; height: 24px; background-size: contain; background-repeat: no-repeat; margin-right: 10px; vertical-align: middle; } .chat-message.user::before { content: '👤'; } .chat-message.bot::before { content: '🤖'; } """ # Gradio interface with gr.Blocks(css=custom_css) as demo: gr.Markdown("# ديمو بوت للقاء مركز حضرموت للدراسات التاريخية") gr.Markdown("## المنعقد السبت 14 - سبتمبر 2024") with gr.Row(): pdf_input = gr.File(label="اختر ملف PDF للدردشة") process_button = gr.Button("رفع وبدء الدردشة") # Let Gradio manage the Textbox internally within ChatInterface chat_interface = gr.ChatInterface( chat, title="الدردشة مع البوت", description="اسأل أي سؤال عن محتوى الملف PDF", theme="soft", examples=["ما هو موضوع الوثيقة؟", "من هم الأشخاص المذكورون؟", "ما هي التواريخ الرئيسية المذكورة؟"], cache_examples=True, retry_btn=None, undo_btn="مسح آخر رسالة", clear_btn="مسح المحادثة", ) audio_output = gr.Audio(label="الرد الصوتي") process_button.click(process_pdf, inputs=[pdf_input], outputs=[chat_interface.textbox]) # Use the internal Textbox and Chatbot provided by the ChatInterface chat_interface.submit( fn=lambda x, y: y[-1][1], inputs=[chat_interface.textbox, chat_interface.chatbot], outputs=[audio_output] ) demo.launch()