import gradio as gr import os import subprocess import uuid import fitz from dotenv import load_dotenv from langchain_community.document_loaders import UnstructuredPDFLoader from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings from langchain_text_splitters import CharacterTextSplitter from langchain_groq import ChatGroq from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from gtts import gTTS import sys import pytesseract from pdf2image import convert_from_path from huggingface_hub import Repository, login from huggingface_hub import hf_hub_download from langchain.schema import Document from PyPDF2 import PdfReader from langdetect import detect # Load environment variables load_dotenv() secret_key = os.getenv("GROQ_API_KEY") hf_key = os.getenv("HF_TOKEN") os.environ["GROQ_API_KEY"] = secret_key login(token=hf_key,add_to_git_credential=True) embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2") # Ensure the necessary folders exist UPLOAD_FOLDER = 'uploads/' AUDIO_FOLDER = 'audio/' for folder in [UPLOAD_FOLDER, AUDIO_FOLDER]: if not os.path.exists(folder): os.makedirs(folder) def load_pdf(file_path): """Load and preprocess Arabic text from a PDF file.""" try: pages = convert_from_path(file_path, 500) except Exception as e: print(f"Error loading PDF: {e}") return [] documents = [] for pageNum, imgBlob in enumerate(pages): try: text = pytesseract.image_to_string(imgBlob, lang="ara") documents.append(text) except Exception as e: print(f"Error processing page {pageNum}: {e}") documents.append("") return documents def prepare_vectorstore(data): text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20, separator="\n") # Create Document objects from the input data documents = [Document(page_content=text) for text in data] # Split the documents into chunks chunks = text_splitter.split_documents(documents) # Create the vector store vectorstore = FAISS.from_documents(chunks, embeddings) return vectorstore def create_chain(vectorstore): llm = ChatGroq(model="gemma2-9b-it", temperature=0) retriever = vectorstore.as_retriever() memory = ConversationBufferMemory(llm=llm, output_key="answer", memory_key="chat_history", return_messages=True) chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=retriever, memory=memory, verbose=False, chain_type="map_reduce" ) return chain custom_css = """ @import url('https://fonts.googleapis.com/css2?family=Noto+Kufi+Arabic:wght@400;700&display=swap'); @import url('https://fonts.googleapis.com/css2?family=Cairo:wght@400;700&display=swap'); body { font-family: 'Noto Kufi Arabic', sans-serif; background: linear-gradient(135deg, #799351 0%, #A67B5B 100%); background-size: cover; background-position: center; background-attachment: fixed; } .gradio-container { direction: rtl; font-family: 'Noto Kufi Arabic', sans-serif; font-size: 16px; max-width: 800px !important; margin: auto !important; border-radius: 20px; box-shadow: 0 8px 32px 0 rgba(31, 38, 135, 0.37); backdrop-filter: blur(4px); border: 1px solid rgba(255, 255, 255, 0.18); padding: 20px; } .gr-textbox input, .gr-textbox textarea { text-align: right !important; /* Align text to the right */ direction: rtl !important; /* Set RTL text direction */ font-family: 'Cairo', sans-serif !important; } .gr-file, .gr-audio { text-align: right !important; /* Align text to the right */ direction: rtl !important; /* Set RTL text direction */ } label { font-size: 14px !important; color: #000000 !important; background-color: #EEEEEE; } .arabic-chatbox .message.user { font-family: 'Cairo', sans-serif !important; background-color: #FFFBE6; } .arabic-chatbox .message.bot { font-family: 'Cairo', sans-serif !important; background-color: #E7FBE6; } #custom-logo { display: block; margin-left: auto; margin-right: auto; width: 30px; /* Set custom width */ height: 20px; /* Set custom height */ } .custom-submit-button { background-color: #E68369 !important; border: none !important; border-radius: 5px !important; padding: 10px 20px !important; font-size: 16px !important; cursor: pointer !important; } .custom-submit-button:hover { background-color: white !important; color: #E6B9A6 !important; } #clear_btn { background-color: #698474; color: white; border: none; border-radius: 5px; padding: 10px 20px; font-size: 16px; cursor: pointer; } #clear_btn:hover { background-color: white; color: #698474; } """ # Function to check if the file is a valid PDF in Arabic and less than 10MB def validate_pdf(pdf): if pdf is None: return "لم يتم اختيار أي ملف", False if not pdf.name.endswith(".pdf"): return "الملف الذي اخترته ليس PDF", False if os.path.getsize(pdf.name) > 10 * 1024 * 1024: return "حجم الملف أكبر من 10 ميجا بايت", False # Check if PDF content is Arabic reader = PdfReader(pdf.name) text = "" for page in reader.pages: text += page.extract_text() try: if detect(text) != "ar": return "الملف ليس باللغة العربية", False except: return "فشل في تحليل اللغة", False return "الملف صالح للدردشة", True def upload_pdf(pdf_file): global vectorstore, chathistory chathistory = [] data = load_pdf(pdf_file) vectorstore = prepare_vectorstore(data) return "تم تحميل الملف بنجاح !", True def chat(user_input): global chathistory, vectorstore if not user_input.strip(): # Check if the input is empty or contains only whitespace return gr.update(value='الرجاء إدخال سؤال.'), "", None prompt = f""" You are an expert Arabic-language assistant specialized in analyzing and responding to queries about Arabic PDF documents. Your responses should be precise, informative, and reflect the professional tone and structure expected in formal Arabic communication. Focus on extracting and presenting relevant information from the document clearly and systematically, while avoiding colloquial or informal language. When responding, ensure the following: - Your answer directly reflects the content of the document. - If the requested information is not available in the document, clearly state that in Arabic. - Keep your response concise yet comprehensive, addressing the question fully. - Respond only in a professional and well-versed Arabic Language. Question: {user_input}. """ chain = create_chain(vectorstore) response = chain({"question": prompt}) assistant_response = response["answer"] chathistory.append({"user_content": f"👤 {user_input}", "bot_content": f"🤖 {assistant_response}"}) # Generate a unique identifier for the audio file audio_id = str(uuid.uuid4()) # Create audio file tts = gTTS(text=assistant_response, lang='ar') audio_file = f"{audio_id}.mp3" tts.save(audio_file) history_display = [(msg["user_content"], msg["bot_content"]) for msg in chathistory] return gr.update(value=''), history_display, audio_file image_path = "logo.png" with gr.Blocks(css=custom_css) as demo: with gr.Row(): gr.Image(image_path, show_fullscreen_button=False, show_download_button=False, show_share_button=False, show_label=False, label='', container=True, height=50, width=50) with gr.Row(): gr.Markdown("