Spaces:
Sleeping
Sleeping
File size: 14,615 Bytes
c4dc0b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
import tensorflow as tf
import numpy as np
from tensorflow_hub import KerasLayer
import os
from keras.layers import Dense,Dropout,Input,BatchNormalization,Lambda
from keras.models import Model
from keras.optimizers import Adam
from keras import Sequential
from keras.callbacks import EarlyStopping,ModelCheckpoint
from keras.layers.experimental.preprocessing import RandomRotation,RandomFlip,RandomCrop,PreprocessingLayer
from tensorflow.math import l2_normalize
from sys import argv
User=argv[1]
NegativeDatasetPath="./FaceRecognition/ExtactedFaces/Negative/"
TrainUsersDatasetPath="./FaceRecognition/ExtactedFaces/Train/"
TestUsersDatasetPath="./FaceRecognition/ExtactedFaces/Test/"
DatasetPath="./FaceRecognition/ExtactedFaces/Dataset/"
def DatasetPaths(UserDatapath,state,NegativeDatasetPath=None,DatasetPath=None):
User=os.listdir(UserDatapath)
UserFiles=[]
UserLabels=[]
for folder in User:
for file in os.listdir(UserDatapath+folder):
UserFiles.append(UserDatapath+folder+'/'+file)
UserLabels.append(folder)
if state==True:
Negativefiles=[]
NegativeLabels=[]
DatasetPathfiles=[]
for file in os.listdir(NegativeDatasetPath):
Negativefiles.append(NegativeDatasetPath+file)
NegativeLabels.append(file.split(",")[0])
for file in os.listdir(DatasetPath):
DatasetPathfiles.append(DatasetPath+file)
return np.array(Negativefiles),np.array(NegativeLabels),np.array(UserFiles),np.array(UserLabels),np.array(DatasetPathfiles)
return np.array(UserFiles),np.array(UserLabels)
Negativefiles,NegativeLabels,UserFiles,UserLabels,DatasetPathfiles=DatasetPaths(TrainUsersDatasetPath,True,NegativeDatasetPath,DatasetPath)
Negativefiles,NegativeLabels,UserFiles,UserLabels,DatasetPathfiles
TrainClasses=np.unique(UserLabels)
TrainClassesCount=len(TrainClasses)
TestUserFiles,TestUserLabels=DatasetPaths(UserDatapath=TestUsersDatasetPath,state=False)
TestClasses=np.unique(TestUserLabels)
TestClassesCount=len(TestClasses)
mask=np.zeros(shape=(224,224,3))
mask[:,:,0]=200
mask[:,:,1]=100
mask[:,:,2]=200
mask=tf.cast(mask/255,tf.float32)
FliPer=RandomFlip(mode="horizontal",)
Rotater=RandomRotation([-0.135,0.135])
def PreProcessInput(Image,num):
if num ==0:
Image=FliPer(Image)
elif num==1:
Image= 0.75*Image+0.25*mask
if num<=2:
return Rotater(Image)
else:
return Image
@tf.function
def load_image(Anchor,Positive,Nagative,State):
Anchor=tf.io.read_file(Anchor)
Anchor=tf.image.decode_jpeg(Anchor)
Anchor = tf.cast(Anchor, tf.float32)
Anchor = tf.image.resize(Anchor, [224,224], method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
ranA=tf.random.uniform(shape=[1],minval=0,maxval=6,dtype=tf.int32)
Positive=tf.io.read_file(Positive)
Positive=tf.image.decode_jpeg(Positive)
Positive = tf.cast(Positive, tf.float32)
Positive = tf.image.resize(Positive, [224,224], method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
ranB=tf.random.uniform(shape=[1],minval=0,maxval=6,dtype=tf.int32)
Negative=tf.io.read_file(Nagative)
Negative=tf.image.decode_jpeg(Negative)
Negative = tf.cast(Negative, tf.float32)
Negative = tf.image.resize(Negative, [224,224], method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
ranN=tf.random.uniform(shape=[1],minval=0,maxval=6,dtype=tf.int32)
if State:
Anchor=PreProcessInput(Anchor/255,ranA)
Positive=PreProcessInput(Positive/255,ranB)
Negative=PreProcessInput(Negative/255,ranN)
else:
Anchor=Anchor/255
Positive=Positive/255
Negative=Negative/255
return (Anchor,Positive,Negative)
def DatasetTripletsGenerator(State):
# Negativefiles=Negativefiles
# NegativeLabels=NegativeLabels
# DatasetPathfiles=DatasetPathfiles
if State:
UsersImagesPath=UserFiles
UsersImagesLabel=UserLabels
ClassesCount=TrainClassesCount
Classes=TrainClasses
else:
ImagesName=TestUserFiles
ImagesLabel=TestUserLabels
ClassesCount=TestClassesCount
Classes=TestClasses
for i in range(ClassesCount):
class_=Classes[i]
files=UsersImagesPath[UsersImagesLabel==class_]
files_num=len(files)
for index in range(files_num-1):
for j in range(index+1,files_num):
ancore=files[index]
positive=files[j]
random=np.random.randint(0,high=10)
negative=None
if random<=3:
negative=Negativefiles[NegativeLabels==class_]
if type(negative)==list:
negative=np.random.choice(negative)
elif random<=7:
negative=UsersImagesPath[UsersImagesLabel != class_]
if type(negative)==list:
negative=np.random.choice(negative)
elif random<=10:
negative=DatasetPathfiles
if type(negative)==list:
negative=np.random.choice(negative)
if type(negative)!=str:
negative=np.random.choice(DatasetPathfiles)
yield ancore,positive,negative,State
@tf.function
def EmbeddingImageLoader(Anchor,Label):
Anchor=tf.io.read_file(Anchor)
Anchor=tf.image.decode_jpeg(Anchor)
Anchor = tf.cast(Anchor, tf.float32)
Anchor = tf.image.resize(Anchor, [224,224], method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
Anchor=Anchor/255
return (Anchor,Label)
TrainData=tf.data.Dataset.from_generator(DatasetTripletsGenerator,args=[True],output_types=(tf.string,tf.string,tf.string,tf.bool),output_shapes=((),(),(),()),name="DataLoaderPipeline")
TrainData=TrainData.map(load_image)
TrainData=TrainData.batch(2).shuffle(buffer_size=10)
TestData=tf.data.Dataset.from_generator(DatasetTripletsGenerator,args=[False],output_types=(tf.string,tf.string,tf.string,tf.bool),output_shapes=((),(),(),()),name="DataLoaderPipeline")
TestData=TestData.map(load_image).batch(2)
EmbeddingData=tf.data.Dataset.from_tensor_slices((list(UserFiles),list(UserLabels))).map(EmbeddingImageLoader).batch(1)
class DistanceLayer(tf.keras.layers.Layer):
def __init__(self):
super().__init__()
def call(self,anchor,positive,negative):
dis_ap=tf.reduce_sum(tf.square(anchor - positive), 1) ## distance between anchor and positive
dis_an=tf.reduce_sum(tf.square(anchor - negative), 1) ## distance between anchor and negative
return dis_ap , dis_an
def GetEncoder():
# /drive/MyDrive/Model/
if os.path.isdir("./FaceRecognition/FaceModel/keras/"):
return tf.keras.models.load_model("./FaceRecognition/FaceModel/")
else:
pretrained_model = KerasLayer("./prtrained/archive/",trainable=False) ##pretraind Model
encode_model = Sequential([
pretrained_model,
Dropout(0.2),
Dense(512, activation='relu'),
BatchNormalization(),
Dense(128, activation="relu"),
Lambda(lambda x:l2_normalize(x))
], name="Encoder")
return encode_model
def SiameseNetwork(inputshape=(224,224,3)):
An_input=Input(shape=inputshape)
Po_input=Input(shape=inputshape)
Ne_input=Input(shape=inputshape)
encoder=GetEncoder()
An_embeding=encoder(An_input)
Po_embeding=encoder(Po_input)
Ne_embeding=encoder(Ne_input)
distanc=DistanceLayer()(An_embeding,Po_embeding,Ne_embeding) #return distance between (A and B) and (A and N)
return Model(inputs=[An_input,Po_input,Ne_input],outputs=distanc)
siames_net=SiameseNetwork()
class SiamesModel(Model):
def __init__(self,siames_net,DesiredDistance):
super(SiamesModel, self).__init__()
self.Model=siames_net
self.DesiredDistance=DesiredDistance
self.LossTracker=tf.keras.metrics.Mean(name="Loss")
self.VALTracker=tf.keras.metrics.Mean(name="VAL")
self.PmeanTracker=tf.keras.metrics.Mean(name="P_mean")
self.PmaxTracker=tf.keras.metrics.Mean(name="P_max")
self.PstdTracker=tf.keras.metrics.Mean(name="P_std")
self.FARTracker=tf.keras.metrics.Mean(name="FAR")
self.N_meanTracker=tf.keras.metrics.Mean(name="N_mean")
self.NstdTracker=tf.keras.metrics.Mean(name="N_std")
self.NminTracker=tf.keras.metrics.Mean(name="N_min")
def call(self,data):
return self.Model(data)
def train_step(self,data):
with tf.GradientTape() as Tape:
AP_distanc,AN_distance=self.Model(data)
loss=self.TripLoss(AP_distanc,AN_distance)
gradients=Tape.gradient(loss,self.Model.trainable_weights)
self.optimizer.apply_gradients(zip(gradients, self.Model.trainable_weights))
self.DistanceEval(AP_distanc,AN_distance)
self.LossTracker.update_state(loss)
return {"VAL":self.VALTracker.result(),
"P_mean":self.PmeanTracker.result(),
"P_max":self.PmaxTracker.result(),
"P_std":self.PstdTracker.result(),
"FAR":self.FARTracker.result(),
"N_mean":self.N_meanTracker.result(),
"N_min":self.NminTracker.result(),
"N_std":self.NstdTracker.result(),
"Loss":self.LossTracker.result()}
def test_step(self, data):
AP_distanc,AN_distance=self.Model(data)
loss=self.TripLoss(AP_distanc,AN_distance)
self.LossTracker.update_state(loss)
self.DistanceEval(AP_distanc,AN_distance)
return {"VAL":self.VALTracker.result(),
"P_mean":self.PmeanTracker.result(),
"P_max":self.PmaxTracker.result(),
"P_std":self.PstdTracker.result(),
"FAR":self.FARTracker.result(),
"N_mean":self.N_meanTracker.result(),
"N_min":self.NminTracker.result(),
"N_std":self.NstdTracker.result(),
"Loss":self.LossTracker.result()}
def TripLoss(self,ap_distance,an_distance):
return tf.reduce_mean(tf.maximum(ap_distance-0.2*self.DesiredDistance,0)+tf.maximum(self.DesiredDistance-an_distance, 0.0))
@property
def metrics(self):
return [self.LossTracker,self.VALTracker,self.PmaxTracker,self.PmeanTracker,self.PstdTracker,self.FARTracker,self.N_meanTracker,self.NminTracker,self.NstdTracker]
def DistanceEval(self,P_distance,N_distance):
P_pred,N_pred=self.TDEvaluation(P_distance,N_distance)
PCDCount=tf.size(tf.where(P_pred))
VAL=PCDCount/tf.size(P_pred)
self.VALTracker.update_state(VAL)
NCDcount=tf.size(tf.where(N_pred))
FAR=1-(NCDcount/tf.size(P_pred))
self.FARTracker.update_state(FAR)
P_mean=tf.reduce_mean(P_distance)
self.PmeanTracker.update_state(P_mean)
N_mean=tf.reduce_mean(N_distance)
self.N_meanTracker.update_state(N_mean)
P_std=tf.math.reduce_std(P_distance)
self.PstdTracker.update_state(P_std)
N_std=tf.math.reduce_std(N_distance)
self.NstdTracker.update_state(N_std)
P_max=tf.reduce_max(P_distance)
self.PmaxTracker.update_state(P_max)
N_min=tf.reduce_min(N_distance)
self.NminTracker.update_state(N_min)
def TDEvaluation(self,P_distance,N_distance):
return tf.cast(P_distance<=self.DesiredDistance,dtype=tf.int8),tf.cast(N_distance>self.DesiredDistance,dtype=tf.int8)
DesiredDistance=1
Optimizer= Adam(learning_rate=1e-4)
Siamesmodel=SiamesModel(siames_net,DesiredDistance)
Siamesmodel.compile(optimizer=Adam(1e-4),weighted_metrics=[])
Siamesmodel.fit(TrainData,validation_data=TestData,epochs=1,callbacks=[EarlyStopping(patience=3),ModelCheckpoint(f"./FaceRecognition/FaceModel/{User}/kerasModel")])
def EmbeddingMaker(DataPipline,Model):
Embedding={}
NamesTimer={}
for Image,Name in DataPipline:
Name=str(Name[0].numpy())[2:-1]
if Name[0] not in Embedding.keys():
NamesTimer[Name]=1
Embedding[Name]=tf.squeeze(Model(Image)).numpy()
else:
Embedding[Name]=Embedding[Name]+tf.squeeze(Model(Image)).numpy()
NamesTimer[Name]=NamesTimer[Name]+1
for Name in Embedding:
Embedding[Name]=Embedding[Name]/NamesTimer[Name]
return Embedding
Embedding=EmbeddingMaker(EmbeddingData,siames_net.layers[3])
EmbeddingLabel,EmbeddingNames=[[Embedding[Name] for Name in Embedding] , {Name:Index+1 for Index,Name in enumerate(Embedding) } ]
class LiteModel(tf.Module):
def __init__(self,FaceModel,FacesEmbedding,name="FaceLiteModel"):
self.FaceModel=FaceModel
self.FacesEmdedding=FacesEmbedding
@tf.function(input_signature=[tf.TensorSpec(shape=[None,224,224,3],dtype=tf.float32),tf.TensorSpec(shape=[],dtype=tf.float32)])
def __call__(self,Image,Threshold):
Embedding=self.FaceModel(Image)
Distance=tf.cast(Threshold,tf.float32)
Name=0
for Index,StoredEmbedding in enumerate(self.FacesEmdedding):
distance=tf.reduce_sum(tf.math.pow(Embedding-StoredEmbedding,2))
if distance<Distance:
Name=Index+1
Distance=distance
return Name,Distance
litemodel=LiteModel(siames_net.layers[3],FacesEmbedding=EmbeddingLabel)
converter=tf.lite.TFLiteConverter.from_concrete_functions([litemodel.__call__.get_concrete_function()],litemodel)
converter.optimizations=[tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types=[tf.float16]
tflitemodel=converter.convert()
with open(f"./FaceRecognition/FaceModel/{User}/FaceXModel.tflite","wb") as file:
file.write(tflitemodel) |