File size: 14,615 Bytes
c4dc0b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import tensorflow as tf

import numpy as np
from tensorflow_hub import KerasLayer
import os

from keras.layers import Dense,Dropout,Input,BatchNormalization,Lambda
from keras.models import Model
from keras.optimizers import Adam
from keras import Sequential
from keras.callbacks import EarlyStopping,ModelCheckpoint
from keras.layers.experimental.preprocessing import RandomRotation,RandomFlip,RandomCrop,PreprocessingLayer
from tensorflow.math import l2_normalize
from sys import argv

User=argv[1]

NegativeDatasetPath="./FaceRecognition/ExtactedFaces/Negative/"
TrainUsersDatasetPath="./FaceRecognition/ExtactedFaces/Train/"
TestUsersDatasetPath="./FaceRecognition/ExtactedFaces/Test/"
DatasetPath="./FaceRecognition/ExtactedFaces/Dataset/"
def DatasetPaths(UserDatapath,state,NegativeDatasetPath=None,DatasetPath=None):
    User=os.listdir(UserDatapath)
    UserFiles=[]
    UserLabels=[]
    for folder in User:
        for file in os.listdir(UserDatapath+folder):
            UserFiles.append(UserDatapath+folder+'/'+file)
            UserLabels.append(folder)
    
    if state==True:
        
        Negativefiles=[]
        NegativeLabels=[]
        DatasetPathfiles=[]
        for file in os.listdir(NegativeDatasetPath):
            Negativefiles.append(NegativeDatasetPath+file)
            NegativeLabels.append(file.split(",")[0])
            
            
        for file in os.listdir(DatasetPath):
            DatasetPathfiles.append(DatasetPath+file)
            
            
        return np.array(Negativefiles),np.array(NegativeLabels),np.array(UserFiles),np.array(UserLabels),np.array(DatasetPathfiles)
    return np.array(UserFiles),np.array(UserLabels)


Negativefiles,NegativeLabels,UserFiles,UserLabels,DatasetPathfiles=DatasetPaths(TrainUsersDatasetPath,True,NegativeDatasetPath,DatasetPath)
Negativefiles,NegativeLabels,UserFiles,UserLabels,DatasetPathfiles
TrainClasses=np.unique(UserLabels)
TrainClassesCount=len(TrainClasses)

TestUserFiles,TestUserLabels=DatasetPaths(UserDatapath=TestUsersDatasetPath,state=False)
TestClasses=np.unique(TestUserLabels)
TestClassesCount=len(TestClasses)

mask=np.zeros(shape=(224,224,3))
mask[:,:,0]=200
mask[:,:,1]=100
mask[:,:,2]=200
mask=tf.cast(mask/255,tf.float32)
FliPer=RandomFlip(mode="horizontal",)
Rotater=RandomRotation([-0.135,0.135])
def PreProcessInput(Image,num):
    if num ==0:
        Image=FliPer(Image)
    elif num==1:
        Image= 0.75*Image+0.25*mask
    if num<=2:
        return Rotater(Image)
    
    else:
        return Image
    
@tf.function
def load_image(Anchor,Positive,Nagative,State):

    Anchor=tf.io.read_file(Anchor)
    Anchor=tf.image.decode_jpeg(Anchor)
    Anchor = tf.cast(Anchor, tf.float32)
    Anchor = tf.image.resize(Anchor, [224,224], method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    ranA=tf.random.uniform(shape=[1],minval=0,maxval=6,dtype=tf.int32)
    
    Positive=tf.io.read_file(Positive)
    Positive=tf.image.decode_jpeg(Positive)
    Positive = tf.cast(Positive, tf.float32)
    Positive = tf.image.resize(Positive, [224,224], method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    ranB=tf.random.uniform(shape=[1],minval=0,maxval=6,dtype=tf.int32)
    
    Negative=tf.io.read_file(Nagative)
    Negative=tf.image.decode_jpeg(Negative)
    Negative = tf.cast(Negative, tf.float32)
    Negative = tf.image.resize(Negative, [224,224], method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    ranN=tf.random.uniform(shape=[1],minval=0,maxval=6,dtype=tf.int32)
    if State:
        Anchor=PreProcessInput(Anchor/255,ranA)
        Positive=PreProcessInput(Positive/255,ranB)
        Negative=PreProcessInput(Negative/255,ranN)
    else:
        Anchor=Anchor/255
        Positive=Positive/255
        Negative=Negative/255
    
    return (Anchor,Positive,Negative)


def DatasetTripletsGenerator(State):
    #     Negativefiles=Negativefiles
#     NegativeLabels=NegativeLabels
#     DatasetPathfiles=DatasetPathfiles
    if State:
        UsersImagesPath=UserFiles
        UsersImagesLabel=UserLabels
        ClassesCount=TrainClassesCount
        Classes=TrainClasses
        
    else:
        ImagesName=TestUserFiles
        ImagesLabel=TestUserLabels
        ClassesCount=TestClassesCount
        Classes=TestClasses
        
        
   
    for i in range(ClassesCount):
        class_=Classes[i]
        files=UsersImagesPath[UsersImagesLabel==class_]
        
        files_num=len(files)
        for index in range(files_num-1):
            for j in range(index+1,files_num):
                ancore=files[index]
                positive=files[j]
                random=np.random.randint(0,high=10)
                negative=None
                if random<=3:
                    negative=Negativefiles[NegativeLabels==class_]
                    if type(negative)==list:
                        negative=np.random.choice(negative)
                elif random<=7:
                    negative=UsersImagesPath[UsersImagesLabel != class_]
                    if type(negative)==list:
                        negative=np.random.choice(negative)
                   
                elif random<=10:
                    negative=DatasetPathfiles
                    if type(negative)==list:
                        negative=np.random.choice(negative)
                
                if type(negative)!=str:
                    negative=np.random.choice(DatasetPathfiles)
                
                    
                
                
                yield ancore,positive,negative,State


@tf.function
def EmbeddingImageLoader(Anchor,Label):

    Anchor=tf.io.read_file(Anchor)
    Anchor=tf.image.decode_jpeg(Anchor)
    Anchor = tf.cast(Anchor, tf.float32)
    Anchor = tf.image.resize(Anchor, [224,224], method = tf.image.ResizeMethod.NEAREST_NEIGHBOR)
    
    Anchor=Anchor/255
       
    
    return (Anchor,Label)


TrainData=tf.data.Dataset.from_generator(DatasetTripletsGenerator,args=[True],output_types=(tf.string,tf.string,tf.string,tf.bool),output_shapes=((),(),(),()),name="DataLoaderPipeline")
TrainData=TrainData.map(load_image)
TrainData=TrainData.batch(2).shuffle(buffer_size=10)

TestData=tf.data.Dataset.from_generator(DatasetTripletsGenerator,args=[False],output_types=(tf.string,tf.string,tf.string,tf.bool),output_shapes=((),(),(),()),name="DataLoaderPipeline")
TestData=TestData.map(load_image).batch(2)

EmbeddingData=tf.data.Dataset.from_tensor_slices((list(UserFiles),list(UserLabels))).map(EmbeddingImageLoader).batch(1)


class DistanceLayer(tf.keras.layers.Layer):
    def __init__(self):
        super().__init__()
    def call(self,anchor,positive,negative):
        dis_ap=tf.reduce_sum(tf.square(anchor - positive), 1)  ## distance between anchor and positive 
        dis_an=tf.reduce_sum(tf.square(anchor - negative), 1)   ## distance between anchor and negative
        return  dis_ap , dis_an
 
def GetEncoder():
#     /drive/MyDrive/Model/
    if os.path.isdir("./FaceRecognition/FaceModel/keras/"):
        return tf.keras.models.load_model("./FaceRecognition/FaceModel/")
    else:
        pretrained_model = KerasLayer("./prtrained/archive/",trainable=False) ##pretraind Model

        encode_model = Sequential([
            pretrained_model,
            Dropout(0.2),
            Dense(512, activation='relu'),
            BatchNormalization(),
            Dense(128, activation="relu"),
            Lambda(lambda x:l2_normalize(x))
        ], name="Encoder")
        return encode_model
def SiameseNetwork(inputshape=(224,224,3)):
    An_input=Input(shape=inputshape)
    
    Po_input=Input(shape=inputshape)
    
    Ne_input=Input(shape=inputshape)
    
    encoder=GetEncoder()
    
    An_embeding=encoder(An_input)
    Po_embeding=encoder(Po_input)
    Ne_embeding=encoder(Ne_input)
    
    
    distanc=DistanceLayer()(An_embeding,Po_embeding,Ne_embeding) #return distance between (A and B) and (A and N)
    
    return Model(inputs=[An_input,Po_input,Ne_input],outputs=distanc)




siames_net=SiameseNetwork()
class SiamesModel(Model):
    def __init__(self,siames_net,DesiredDistance):
        super(SiamesModel, self).__init__()
        
        self.Model=siames_net
        self.DesiredDistance=DesiredDistance
        self.LossTracker=tf.keras.metrics.Mean(name="Loss")
        
        self.VALTracker=tf.keras.metrics.Mean(name="VAL")
        
        self.PmeanTracker=tf.keras.metrics.Mean(name="P_mean")
        
        self.PmaxTracker=tf.keras.metrics.Mean(name="P_max")
        
        self.PstdTracker=tf.keras.metrics.Mean(name="P_std")
        
        self.FARTracker=tf.keras.metrics.Mean(name="FAR")
        
        self.N_meanTracker=tf.keras.metrics.Mean(name="N_mean")
        
        self.NstdTracker=tf.keras.metrics.Mean(name="N_std")
        self.NminTracker=tf.keras.metrics.Mean(name="N_min")
        
    def call(self,data):
        return self.Model(data)
    
    def train_step(self,data):
        with tf.GradientTape() as Tape:
            AP_distanc,AN_distance=self.Model(data)
            loss=self.TripLoss(AP_distanc,AN_distance)
            gradients=Tape.gradient(loss,self.Model.trainable_weights)
            self.optimizer.apply_gradients(zip(gradients, self.Model.trainable_weights))
        self.DistanceEval(AP_distanc,AN_distance)
        self.LossTracker.update_state(loss)
        return {"VAL":self.VALTracker.result(),
                "P_mean":self.PmeanTracker.result(),
                "P_max":self.PmaxTracker.result(),
                "P_std":self.PstdTracker.result(),
                "FAR":self.FARTracker.result(),
                "N_mean":self.N_meanTracker.result(),
                "N_min":self.NminTracker.result(),
                "N_std":self.NstdTracker.result(),
                "Loss":self.LossTracker.result()}
    
    
    def test_step(self, data):
        AP_distanc,AN_distance=self.Model(data)
        loss=self.TripLoss(AP_distanc,AN_distance)
        self.LossTracker.update_state(loss)
        self.DistanceEval(AP_distanc,AN_distance)
        return {"VAL":self.VALTracker.result(),
                "P_mean":self.PmeanTracker.result(),
                "P_max":self.PmaxTracker.result(),
                "P_std":self.PstdTracker.result(),
                "FAR":self.FARTracker.result(),
                "N_mean":self.N_meanTracker.result(),
                "N_min":self.NminTracker.result(),
                "N_std":self.NstdTracker.result(),
                "Loss":self.LossTracker.result()}
    
    
    
    def TripLoss(self,ap_distance,an_distance):
        return tf.reduce_mean(tf.maximum(ap_distance-0.2*self.DesiredDistance,0)+tf.maximum(self.DesiredDistance-an_distance, 0.0))
    
    
    @property
    def metrics(self):
        return [self.LossTracker,self.VALTracker,self.PmaxTracker,self.PmeanTracker,self.PstdTracker,self.FARTracker,self.N_meanTracker,self.NminTracker,self.NstdTracker]
    
    def DistanceEval(self,P_distance,N_distance):

        P_pred,N_pred=self.TDEvaluation(P_distance,N_distance)
        PCDCount=tf.size(tf.where(P_pred))

        VAL=PCDCount/tf.size(P_pred)
        self.VALTracker.update_state(VAL)
        
        NCDcount=tf.size(tf.where(N_pred))
        FAR=1-(NCDcount/tf.size(P_pred))
        self.FARTracker.update_state(FAR)
        P_mean=tf.reduce_mean(P_distance)
        self.PmeanTracker.update_state(P_mean)
        N_mean=tf.reduce_mean(N_distance)
        self.N_meanTracker.update_state(N_mean)
        P_std=tf.math.reduce_std(P_distance)
        self.PstdTracker.update_state(P_std)
        N_std=tf.math.reduce_std(N_distance)
        self.NstdTracker.update_state(N_std)
        P_max=tf.reduce_max(P_distance)
        self.PmaxTracker.update_state(P_max)
        N_min=tf.reduce_min(N_distance)
        self.NminTracker.update_state(N_min)
    
    def TDEvaluation(self,P_distance,N_distance):
        return tf.cast(P_distance<=self.DesiredDistance,dtype=tf.int8),tf.cast(N_distance>self.DesiredDistance,dtype=tf.int8)
    
    
DesiredDistance=1
Optimizer= Adam(learning_rate=1e-4)
Siamesmodel=SiamesModel(siames_net,DesiredDistance)
Siamesmodel.compile(optimizer=Adam(1e-4),weighted_metrics=[])
Siamesmodel.fit(TrainData,validation_data=TestData,epochs=1,callbacks=[EarlyStopping(patience=3),ModelCheckpoint(f"./FaceRecognition/FaceModel/{User}/kerasModel")])



def EmbeddingMaker(DataPipline,Model):
    Embedding={}
    NamesTimer={}
    for  Image,Name in DataPipline:
        Name=str(Name[0].numpy())[2:-1]
        
        if Name[0] not in Embedding.keys():
            NamesTimer[Name]=1
            Embedding[Name]=tf.squeeze(Model(Image)).numpy()
            
        else:
            Embedding[Name]=Embedding[Name]+tf.squeeze(Model(Image)).numpy()
            NamesTimer[Name]=NamesTimer[Name]+1
    for Name in Embedding:
        Embedding[Name]=Embedding[Name]/NamesTimer[Name]
    return Embedding


Embedding=EmbeddingMaker(EmbeddingData,siames_net.layers[3])
EmbeddingLabel,EmbeddingNames=[[Embedding[Name] for Name in Embedding] , {Name:Index+1 for Index,Name in enumerate(Embedding) } ]



class LiteModel(tf.Module):
    def __init__(self,FaceModel,FacesEmbedding,name="FaceLiteModel"):
        self.FaceModel=FaceModel
        self.FacesEmdedding=FacesEmbedding
       
    @tf.function(input_signature=[tf.TensorSpec(shape=[None,224,224,3],dtype=tf.float32),tf.TensorSpec(shape=[],dtype=tf.float32)])
    def __call__(self,Image,Threshold):
        Embedding=self.FaceModel(Image)
        Distance=tf.cast(Threshold,tf.float32)
        Name=0
        for Index,StoredEmbedding in enumerate(self.FacesEmdedding):
            distance=tf.reduce_sum(tf.math.pow(Embedding-StoredEmbedding,2))
            if distance<Distance:
                Name=Index+1
                Distance=distance
        return Name,Distance
    
litemodel=LiteModel(siames_net.layers[3],FacesEmbedding=EmbeddingLabel)


converter=tf.lite.TFLiteConverter.from_concrete_functions([litemodel.__call__.get_concrete_function()],litemodel)
converter.optimizations=[tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types=[tf.float16]
tflitemodel=converter.convert()

with open(f"./FaceRecognition/FaceModel/{User}/FaceXModel.tflite","wb") as file:
    file.write(tflitemodel)