File size: 5,777 Bytes
c4dc0b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import pandas as pd
from tensorflow.data import Dataset
from tensorflow import lite,float16,random,where,cast,float32,constant,reshape
from sklearn.model_selection import train_test_split
from os.path import isdir
import os
from keras.callbacks import EarlyStopping,ModelCheckpoint
from keras.models import Model,load_model
from keras.layers import Layer,Dense,Dropout,Input,Embedding,Concatenate
from  keras.optimizers import Adam
from keras.losses import mean_absolute_error
from keras.metrics import R2Score
import sys
User=sys.argv[1]
print(sys.argv[0])
Data=pd.read_csv(f"./IndoorLocalization/Data/{User}/Data.csv")
print(Data)
PhonsId=np.sort(Data["PHONEID"].unique())
phoneidMap={phoneid:i for i,phoneid in enumerate(PhonsId)}
def ReplaceId(id):
    if (np.random.randint(low=0,high=20,size=1)==3):
        return len(phoneidMap)
    return phoneidMap[id]

Data["PHONEID"]=Data["PHONEID"].apply(ReplaceId)
Data=Data.dropna()

def CleanTrainData(df):
    target=df[["SPACEID","LONGITUDE","LATITUDE"]]
    df=df.drop(['LONGITUDE', 'LATITUDE',"SPACEID"], axis=1)
    return df, target

DataX,TargetY=CleanTrainData(Data)

LONGITUDEMax=TargetY["LONGITUDE"].max()
LATITUDEMax=TargetY["LATITUDE"].max()
LONGITUDEMin=TargetY["LONGITUDE"].min()
LATITUDEMin=TargetY["LATITUDE"].min()
BuildingWidth=20
BuildingLength=20


def LONGITUDE_min_max_newrange(item):
    return ((item-LONGITUDEMin)/(LONGITUDEMax-LONGITUDEMin))*BuildingWidth

def LATITUDE_min_max_newrange(item):
    return ((item-LATITUDEMin)/(LATITUDEMax-LATITUDEMin))*BuildingLength

TargetY["LONGITUDE"]=TargetY["LONGITUDE"].apply(LONGITUDE_min_max_newrange)
TargetY["LATITUDE"]=TargetY["LATITUDE"].apply(LATITUDE_min_max_newrange)

X_train, X_test, y_train, y_test = train_test_split(DataX.values,TargetY.values[:,1:], test_size=0.2, random_state=42,shuffle=True,stratify=TargetY.values[:,0])
SPACESGroups=TargetY.groupby("SPACEID")
SPACESGroupsmean=SPACESGroups.mean()
SPACEIDPosition={f"{SPACEID}":(SPACESGroupsmean.query(f"SPACEID=={SPACEID}")["LONGITUDE"].values[0],SPACESGroupsmean.query(f"SPACEID=={SPACEID}")["LATITUDE"].values[0]) for SPACEID in list(SPACESGroups.groups.keys()) }

SPACEIDPositionArray=np.array([list(SPACEIDPosition[f"{i}"]) for i in SPACESGroups.groups.keys()])
PlacesNumber=len(np.unique(TargetY.iloc[:,0]))
PhonesNumber=np.unique(DataX["PHONEID"]).size


def ApplyNormalizationthenNois(X,Phoneid,Y):
    X=cast(X,dtype=float32)
    Y=cast(Y,dtype=float32)
    additem=np.random.choice([0,1,2])
    Nuknow=np.random.randint(0,high=5,size=1)
    X=(X+100)/200
    if additem ==1:
        if Nuknow==0:
            return (X,0),Y
        return (X,Phoneid),Y

    else:
        noise=random.normal(shape=X.shape,mean=0,stddev=0.1,dtype=float32)
        NoisedX=X+noise
        NoisedX=where(NoisedX<0,x=0.0,y=NoisedX)
        NoisedX=where(NoisedX>1,x=1.0,y=NoisedX)
        if Nuknow==0:
            return (NoisedX,0),Y
        return (NoisedX,Phoneid),Y

def ApplyNormalizationOnly(X,Phoneid,Y):
    X=cast(X,dtype=float32)
    Y=cast(Y,dtype=float32)
    X=(X+100)/200
    if Phoneid ==1:
        return (X,1),Y
    elif Phoneid ==2:
        return (X,2),Y
    else:
        return (X,0),Y
    
TrainDataPipeline=Dataset.from_tensor_slices((X_train[:,:-1],X_train[:,-1],y_train)).map(ApplyNormalizationthenNois).batch(100)

TestDataPipeline=Dataset.from_tensor_slices((X_test[:,:-1],X_test[:,-1],y_test)).map(ApplyNormalizationOnly).batch(10)

class PositionAproxmator(Layer):
    def __init__(self,PlacesPosition,name="PositionAproxmator"):
        super(PositionAproxmator,self).__init__()
        self.PlacesPosition=constant(PlacesPosition,dtype=float32,name="PlacesPositions")
    def build(self,inputs_shape):
        self.W=self.add_weight(shape=(inputs_shape[1],2),trainable=True,dtype=float32,name="PlacesWeight")

    def call(self,Probilites):
        return Probilites@(self.PlacesPosition+self.W)



def MakeModel(SPACEIDPosition,PhonesNumber):
    if isdir(f"./IndoorLocalization/IndoorModels/{User}/kerasModel"):
        return load_model(f"./IndoorLocalization/IndoorModels/{User}/kerasModel")
    WiFiReadings=Input(168)
    Phoneid=Input(1)
    Embeding=Embedding(PhonesNumber,64, embeddings_regularizer="l2")(Phoneid)
    X=Dense(128,activation="relu")(WiFiReadings)
    X=Dropout(0.2)(X)
    z=Dense(64,activation="relu")(X)
    X=z+reshape(Embeding,shape=(-1,64))
    X=Concatenate()([z,X,reshape(Embeding,shape=(-1,64))])
    X=Dropout(0.2)(X)
    X=Dense(100,activation="relu", kernel_regularizer="l2")(X)
    X=Dropout(0.1)(X)
    X=Dense(64,activation="relu")(X)
    X=X+z
    X=Dense(64,activation="relu")(X)
    X=Dropout(0.2)(X)
    X=Dense(PlacesNumber,activation="softmax")(X)
    X=PositionAproxmator(SPACEIDPosition)(X)

    return Model(inputs=[WiFiReadings,Phoneid],outputs=[X])

model=MakeModel(SPACEIDPositionArray,PhonesNumber)
model.compile(optimizer=Adam(learning_rate=1e-4),loss=mean_absolute_error,metrics=[R2Score()])
hsitory=model.fit(TrainDataPipeline,validation_data=TestDataPipeline,epochs=5,callbacks=[EarlyStopping(patience=3),ModelCheckpoint(f"./IndoorLocalization/IndoorModels/{User}/kerasModel")])
# hsitory=model.fit(TrainDataPipeline,validation_data=TestDataPipeline,epochs=5,callbacks=[EarlyStopping(patience=3),ModelCheckpoint(r"C:\Users\mf\Desktop\AIProjects")])

converter=lite.TFLiteConverter.from_keras_model(model)
converter.optimizations=[lite.Optimize.DEFAULT]
converter.target_spec.supported_types=[float16]
tflitemodel=converter.convert()
with open(f"./IndoorLocalization/IndoorModels/{User}/FinalHistoryModel.tflite","wb") as file:
    file.write(tflitemodel)