Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from transformers import AutoModelForSequenceClassification
|
5 |
+
import warnings
|
6 |
+
warnings.filterwarnings("ignore")
|
7 |
+
import nltk
|
8 |
+
nltk.download('all')
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import helper
|
11 |
+
import preprocessor
|
12 |
+
from mtranslate import translate
|
13 |
+
import pandas as pd
|
14 |
+
import os
|
15 |
+
from gtts import gTTS
|
16 |
+
import base64
|
17 |
+
import torch
|
18 |
+
import seaborn as sns
|
19 |
+
st.sidebar.title("Whatsapp Chat analyzer")
|
20 |
+
|
21 |
+
uploaded_file= st.sidebar.file_uploader("Choose a file")
|
22 |
+
|
23 |
+
if uploaded_file is not None:
|
24 |
+
|
25 |
+
bytes_data = uploaded_file.getvalue()
|
26 |
+
data=bytes_data.decode("utf-8")
|
27 |
+
df_new= preprocessor.preprocess(data)
|
28 |
+
|
29 |
+
user_list= df_new['users'].unique().tolist()
|
30 |
+
user_list.sort()
|
31 |
+
user_list.insert(0,"Group analysis")
|
32 |
+
selected_user=st.sidebar.selectbox("show analysis wrt",user_list)
|
33 |
+
if st.sidebar.button("Show Analysis"):
|
34 |
+
num_messages,words,num_links=helper.fetch_stats(selected_user,df_new)
|
35 |
+
st.title("Top Statistics")
|
36 |
+
col1,col2,col3=st.columns(3)
|
37 |
+
|
38 |
+
with col1:
|
39 |
+
st.header("Total Messages")
|
40 |
+
st.title(num_messages)
|
41 |
+
with col2:
|
42 |
+
st.header("Total Words")
|
43 |
+
st.title(words)
|
44 |
+
with col3:
|
45 |
+
st.header("Links Shared")
|
46 |
+
st.title(num_links)
|
47 |
+
|
48 |
+
st.title("Timeline")
|
49 |
+
col1, col2 = st.columns(2)
|
50 |
+
|
51 |
+
with col1:
|
52 |
+
st.header("Monthly ")
|
53 |
+
timeline = helper.monthly_timeline(selected_user, df_new)
|
54 |
+
fig, ax = plt.subplots()
|
55 |
+
ax.plot(timeline['time'], timeline['message'])
|
56 |
+
plt.xticks(rotation='vertical')
|
57 |
+
st.pyplot(fig)
|
58 |
+
with col2:
|
59 |
+
st.title("Daily")
|
60 |
+
daily_timeline = helper.Daily_timeline(selected_user, df_new)
|
61 |
+
fig, ax = plt.subplots()
|
62 |
+
ax.plot(daily_timeline['Date'], daily_timeline['message'], color='black')
|
63 |
+
plt.xticks(rotation='vertical')
|
64 |
+
st.pyplot(fig)
|
65 |
+
|
66 |
+
st.title("Activity Map")
|
67 |
+
col1,col2=st.columns(2)
|
68 |
+
|
69 |
+
with col1:
|
70 |
+
st.header("Most busy day")
|
71 |
+
busy_day=helper.week_activity_map(selected_user, df_new)
|
72 |
+
fig,ax=plt.subplots()
|
73 |
+
ax.bar(busy_day.index,busy_day.values,color=('violet','indigo','blue','green','yellow','orange','red'))
|
74 |
+
plt.xticks(rotation='vertical')
|
75 |
+
st.pyplot(fig)
|
76 |
+
with col2:
|
77 |
+
st.header("Most busy Month")
|
78 |
+
busy_day = helper.month_activity_map(selected_user, df_new)
|
79 |
+
fig, ax = plt.subplots()
|
80 |
+
ax.bar(busy_day.index, busy_day.values,color=('indigo','blue','green','red'))
|
81 |
+
plt.xticks(rotation='vertical')
|
82 |
+
st.pyplot(fig)
|
83 |
+
|
84 |
+
st.title("Weekly Activity HeatMap")
|
85 |
+
Activity_heatmap=helper.activity_heatmap(selected_user,df_new)
|
86 |
+
fig,ax=plt.subplots()
|
87 |
+
ax=sns.heatmap(Activity_heatmap,cmap='RdBu',linewidths=1,linecolor='black')
|
88 |
+
st.pyplot(fig)
|
89 |
+
|
90 |
+
if selected_user == "Group analysis":
|
91 |
+
st.title("Most busy user")
|
92 |
+
x,new_df=helper.most_busy_users(df_new)
|
93 |
+
fig,ax=plt.subplots()
|
94 |
+
col1,col2=st.columns(2)
|
95 |
+
|
96 |
+
with col1:
|
97 |
+
ax.bar(x.index, x.values,color=('blue','red','pink','orange','green'))
|
98 |
+
plt.xticks(rotation='vertical')
|
99 |
+
st.pyplot(fig)
|
100 |
+
with col2:
|
101 |
+
st.dataframe(new_df)
|
102 |
+
|
103 |
+
st.title("Chat Sentiment Analysis")
|
104 |
+
col1, col2, col3 = st.columns(3)
|
105 |
+
|
106 |
+
with col1:
|
107 |
+
st.header("Positive")
|
108 |
+
pos_words = helper.pos_words(selected_user, df_new)
|
109 |
+
st.dataframe(pos_words)
|
110 |
+
with col2:
|
111 |
+
st.header("Negative")
|
112 |
+
neg_words = helper.neg_words(selected_user, df_new)
|
113 |
+
st.dataframe(neg_words)
|
114 |
+
with col3:
|
115 |
+
st.header("Neutral")
|
116 |
+
neu_words = helper.neu_words(selected_user, df_new)
|
117 |
+
st.dataframe(neu_words)
|
118 |
+
|
119 |
+
|
120 |
+
st.title("Word cloud")
|
121 |
+
df_wc = helper.word_cloud(selected_user, df_new)
|
122 |
+
fig, ax = plt.subplots()
|
123 |
+
ax.imshow(df_wc)
|
124 |
+
plt.axis('off')
|
125 |
+
st.pyplot(fig)
|
126 |
+
|
127 |
+
st.title("Most Common Words")
|
128 |
+
most_common_df=helper.most_common_words(selected_user,df_new)
|
129 |
+
fig,ax=plt.subplots()
|
130 |
+
ax.barh(most_common_df[0],most_common_df[1])
|
131 |
+
st.pyplot(fig)
|
132 |
+
st.dataframe(most_common_df.style.set_properties(**{"background-color": "black", "color": "lawngreen"}))
|
133 |
+
|
134 |
+
emoji_df=helper.emoji_helper(selected_user,df_new)
|
135 |
+
st.title("Emoji Analysis")
|
136 |
+
st.dataframe(emoji_df.style.set_properties(**{"background-color": "black", "color": "lawngreen"}))
|
137 |
+
|
138 |
+
|
139 |
+
st.title("Sentiment Analysis")
|
140 |
+
@st.cache(allow_output_mutation=True)
|
141 |
+
def get_model():
|
142 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment"
|
143 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
144 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
145 |
+
return tokenizer,model
|
146 |
+
|
147 |
+
|
148 |
+
tokenizer, model = get_model()
|
149 |
+
|
150 |
+
user_input = st.text_area('Enter Text to Analyze')
|
151 |
+
button = st.button("Analyze")
|
152 |
+
|
153 |
+
sent_pipeline = pipeline("sentiment-analysis")
|
154 |
+
if user_input and button:
|
155 |
+
test_sample = tokenizer([user_input], padding=True, truncation=True, max_length=512, return_tensors='pt')
|
156 |
+
# test_sample
|
157 |
+
output = model(**test_sample)
|
158 |
+
st.write("Prediction: ", sent_pipeline(user_input))
|
159 |
+
showWarningOnDirectExecution = False
|