Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
data = pd.read_csv('/content/train1.csv')
|
3 |
+
|
4 |
+
data.head()
|
5 |
+
|
6 |
+
data.corr()
|
7 |
+
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
from sklearn.model_selection import train_test_split
|
11 |
+
from sklearn.preprocessing import StandardScaler
|
12 |
+
from sklearn.neighbors import KNeighborsClassifier
|
13 |
+
from sklearn.metrics import classification_report, accuracy_score
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import seaborn as sns
|
16 |
+
|
17 |
+
|
18 |
+
# Split dataset into independent and dependent variables
|
19 |
+
X = data.drop('price_range', axis=1)
|
20 |
+
y = data['price_range']
|
21 |
+
|
22 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
23 |
+
|
24 |
+
knn = KNeighborsClassifier(n_neighbors=5, metric = 'minkowski' , p=1)
|
25 |
+
knn.fit(X_train, y_train)
|
26 |
+
|
27 |
+
y_pred = knn.predict(X_test)
|
28 |
+
|
29 |
+
print("Accuracy:", accuracy_score(y_test, y_pred))
|
30 |
+
print("Classification Report:\n", classification_report(y_test, y_pred))
|
31 |
+
|
32 |
+
|
33 |
+
import pandas as pd
|
34 |
+
import matplotlib.pyplot as plt
|
35 |
+
import seaborn as sns # Import seaborn for scatterplot
|
36 |
+
|
37 |
+
# Create a new data point
|
38 |
+
new_data_point = pd.DataFrame({
|
39 |
+
'battery_power': [1500],
|
40 |
+
'blue': [1],
|
41 |
+
'clock_speed': [2.5],
|
42 |
+
'dual_sim': [1],
|
43 |
+
'fc': [16],
|
44 |
+
'four_g': [1],
|
45 |
+
'int_memory': [32],
|
46 |
+
'm_dep': [0.5],
|
47 |
+
'mobile_wt': [150],
|
48 |
+
'n_cores': [8],
|
49 |
+
'pc': [20],
|
50 |
+
'px_height': [1080],
|
51 |
+
'px_width': [1920],
|
52 |
+
'ram': [4000],
|
53 |
+
'sc_h': [15],
|
54 |
+
'sc_w': [8],
|
55 |
+
'talk_time': [10],
|
56 |
+
'three_g': [1],
|
57 |
+
'touch_screen': [1],
|
58 |
+
'wifi': [1]
|
59 |
+
})
|
60 |
+
|
61 |
+
# Predict the price range for the new data point
|
62 |
+
predicted_price_range = knn.predict(new_data_point)
|
63 |
+
|
64 |
+
print("Predicted price range for the new data point:", predicted_price_range[0])
|
65 |
+
|
66 |
+
# Visualize the data (example with a scatter plot)
|
67 |
+
plt.figure(figsize=(10, 6))
|
68 |
+
sns.scatterplot(x='ram', y='battery_power', hue='price_range', data=data)
|
69 |
+
plt.title('Mobile Phone Price Range')
|
70 |
+
plt.xlabel('RAM')
|
71 |
+
plt.ylabel('Battery Power')
|
72 |
+
plt.show()
|
73 |
+
|
74 |
+
# **KMeans**
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
from sklearn.cluster import KMeans
|
79 |
+
from sklearn.metrics import adjusted_rand_score, confusion_matrix
|
80 |
+
|
81 |
+
kmeans = KMeans(n_clusters=4, random_state=42)
|
82 |
+
kmeans.fit(X)
|
83 |
+
|
84 |
+
#Predict cluster assignments
|
85 |
+
cluster_labels = kmeans.labels_
|
86 |
+
|
87 |
+
#Evaluate the clustering performance by comparing clusters with actual price_range labels
|
88 |
+
# We use Adjusted Rand Index (ARI) and a confusion matrix for evaluation
|
89 |
+
ari = adjusted_rand_score(y, cluster_labels)
|
90 |
+
print(f"Adjusted Rand Index (ARI): {ari}")
|
91 |
+
|
92 |
+
conf_matrix = confusion_matrix(y, cluster_labels)
|
93 |
+
|
94 |
+
# Visualize the confusion matrix
|
95 |
+
plt.figure(figsize=(8, 6))
|
96 |
+
sns.heatmap(conf_matrix, annot=True, fmt="d", cmap="Blues", xticklabels=range(4), yticklabels=range(4))
|
97 |
+
plt.xlabel("Cluster Labels")
|
98 |
+
plt.ylabel("Actual Price Range")
|
99 |
+
plt.title("Confusion Matrix: K-Means Clustering vs Actual Price Range")
|
100 |
+
plt.show()
|
101 |
+
|
102 |
+
from sklearn.decomposition import PCA
|
103 |
+
|
104 |
+
pca = PCA(n_components=2)
|
105 |
+
X_pca = pca.fit_transform(X)
|
106 |
+
|
107 |
+
plt.figure(figsize=(8, 6))
|
108 |
+
sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1], hue=cluster_labels, palette="Set1", s=100, edgecolor="k")
|
109 |
+
plt.title("K-Means Clusters Visualization (2D PCA Projection)")
|
110 |
+
plt.xlabel("PCA Component 1")
|
111 |
+
plt.ylabel("PCA Component 2")
|
112 |
+
plt.show()
|
113 |
+
|
114 |
+
# prompt: adjusted_rand_score
|
115 |
+
|
116 |
+
from sklearn.metrics import adjusted_rand_score
|
117 |
+
|
118 |
+
# Assuming 'y' is the true labels and 'cluster_labels' are the predicted cluster assignments
|
119 |
+
ari = adjusted_rand_score(y, cluster_labels)
|
120 |
+
print(f"Adjusted Rand Index (ARI): {ari}")
|
121 |
+
|
122 |
+
|
123 |
+
!pip install gradio
|
124 |
+
|
125 |
+
# Define the prediction function
|
126 |
+
def predict_price_range(battery_power, blue, clock_speed, dual_sim, fc, four_g, int_memory, m_dep, mobile_wt, n_cores, pc, px_height, px_width, ram, sc_h, sc_w, talk_time, three_g, touch_screen, wifi):
|
127 |
+
new_data_point = pd.DataFrame({
|
128 |
+
'battery_power': [battery_power],
|
129 |
+
'blue': [blue],
|
130 |
+
'clock_speed': [clock_speed],
|
131 |
+
'dual_sim': [dual_sim],
|
132 |
+
'fc': [fc],
|
133 |
+
'four_g': [four_g],
|
134 |
+
'int_memory': [int_memory],
|
135 |
+
'm_dep': [m_dep],
|
136 |
+
'mobile_wt': [mobile_wt],
|
137 |
+
'n_cores': [n_cores],
|
138 |
+
'pc': [pc],
|
139 |
+
'px_height': [px_height],
|
140 |
+
'px_width': [px_width],
|
141 |
+
'ram': [ram],
|
142 |
+
'sc_h': [sc_h],
|
143 |
+
'sc_w': [sc_w],
|
144 |
+
'talk_time': [talk_time],
|
145 |
+
'three_g': [three_g],
|
146 |
+
'touch_screen': [touch_screen],
|
147 |
+
'wifi': [wifi]
|
148 |
+
})
|
149 |
+
|
150 |
+
prediction = knn.predict(new_data_point)
|
151 |
+
return f"Predicted price range: {prediction[0]}"
|
152 |
+
|
153 |
+
# Create the Gradio interface
|
154 |
+
interface = gr.Interface(
|
155 |
+
fn=predict_price_range,
|
156 |
+
inputs=[
|
157 |
+
gr.Slider(minimum=0, maximum=3000, step=1, label="Battery Power"),
|
158 |
+
gr.Checkbox(label="Bluetooth"),
|
159 |
+
gr.Slider(minimum=0, maximum=3.0, step=0.1, label="Clock Speed (GHz)"),
|
160 |
+
gr.Checkbox(label="Dual SIM"),
|
161 |
+
gr.Slider(minimum=0, maximum=50, step=1, label="Front Camera (MP)"),
|
162 |
+
gr.Checkbox(label="4G"),
|
163 |
+
gr.Slider(minimum=0, maximum=256, step=1, label="Internal Memory (GB)"),
|
164 |
+
gr.Slider(minimum=0, maximum=1, step=0.1, label="Mobile Depth (cm)"),
|
165 |
+
gr.Slider(minimum=100, maximum=3000, step=1, label="Mobile Weight (g)"),
|
166 |
+
gr.Slider(minimum=1, maximum=8, step=1, label="Number of Cores"),
|
167 |
+
gr.Slider(minimum=0, maximum=100, step=1, label="PC"),
|
168 |
+
gr.Slider(minimum=0, maximum=4000, step=1, label="Pixel Height"),
|
169 |
+
gr.Slider(minimum=0, maximum=4000, step=1, label="Pixel Width"),
|
170 |
+
gr.Slider(minimum=0, maximum=8000, step=1, label="RAM (MB)"),
|
171 |
+
gr.Slider(minimum=0, maximum=20, step=1, label="Screen Height (cm)"),
|
172 |
+
gr.Slider(minimum=0, maximum=20, step=1, label="Screen Width (cm)"),
|
173 |
+
gr.Slider(minimum=0, maximum=100, step=1, label="Talk Time (hours)"),
|
174 |
+
gr.Checkbox(label="3G"),
|
175 |
+
gr.Checkbox(label="Touch Screen"),
|
176 |
+
gr.Checkbox(label="WiFi")
|
177 |
+
],
|
178 |
+
outputs="text",
|
179 |
+
title="Mobile Price Range Predictor",
|
180 |
+
description="Enter the features of a mobile phone to predict its price range."
|
181 |
+
)
|
182 |
+
|
183 |
+
if __name__ == "__main__":
|
184 |
+
interface.launch()
|
185 |
+
|
186 |
+
|