Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
@st.cache_resource
|
5 |
+
def load_model():
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
8 |
+
return tokenizer, model
|
9 |
+
|
10 |
+
def generate_response(user_input, tokenizer, model):
|
11 |
+
inputs = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt")
|
12 |
+
output = model.generate(inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
13 |
+
response = tokenizer.decode(output[:, inputs.shape[-1]:][0], skip_special_tokens=True)
|
14 |
+
return response
|
15 |
+
|
16 |
+
def main():
|
17 |
+
st.title("Medical Chatbot")
|
18 |
+
st.write("This chatbot is designed to assist with general medical inquiries. Please consult a healthcare provider for any serious issues.")
|
19 |
+
|
20 |
+
tokenizer, model = load_model()
|
21 |
+
|
22 |
+
if 'chat_history' not in st.session_state:
|
23 |
+
st.session_state['chat_history'] = []
|
24 |
+
|
25 |
+
user_input = st.text_input("You: ", key="input")
|
26 |
+
|
27 |
+
if st.button("Send"):
|
28 |
+
if user_input:
|
29 |
+
st.session_state['chat_history'].append(f"You: {user_input}")
|
30 |
+
response = generate_response(user_input, tokenizer, model)
|
31 |
+
st.session_state['chat_history'].append(f"Bot: {response}")
|
32 |
+
|
33 |
+
for message in st.session_state['chat_history']:
|
34 |
+
st.write(message)
|
35 |
+
|
36 |
+
if __name__ == "__main__":
|
37 |
+
main()
|