Spaces:
Running
Running
File size: 115,211 Bytes
e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d d793afd e221c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/gemma3n/modular_gemma3n.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_gemma3n.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the \"License\");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an \"AS IS\" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import math
from collections.abc import Callable, Sequence
from dataclasses import dataclass
from typing import Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, HybridCache
from ...generation import GenerationMixin
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...utils import (
ModelOutput,
auto_docstring,
can_return_tuple,
is_torchdynamo_compiling,
logging,
)
from ...utils.deprecation import deprecate_kwarg
from ..auto import AutoModel
from .configuration_gemma3n import Gemma3nAudioConfig, Gemma3nConfig, Gemma3nTextConfig, Gemma3nVisionConfig
logger = logging.get_logger(__name__)
@dataclass
@auto_docstring(
custom_intro=\"\"\"
Base class for Gemma3n outputs, with hidden states and attentions.
\"\"\"
)
class Gemma3nModelOutputWithPast(BaseModelOutputWithPast):
r\"\"\"
past_key_values (\`tuple(tuple(torch.FloatTensor))\`, *optional*, returned when \`use_cache=True\` is passed or when \`config.use_cache=True\`):
Tuple of \`tuple(torch.FloatTensor)\` of length \`config.n_layers\`, with each tuple having 2 tensors of shape
\`(batch_size, num_heads, sequence_length, embed_size_per_head)\`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
\`past_key_values\` input) to speed up sequential decoding.
image_hidden_states (\`torch.FloatTensor\`, *optional*):
A \`torch.FloatTensor\` of size \`(batch_size, num_images, sequence_length, hidden_size)\`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
audio_hidden_states (\`torch.FloatTensor\`, *optional*):
A \`torch.FloatTensor\` of size \`(batch_size, num_images, sequence_length, hidden_size)\`.
audio_hidden_states of the model produced by the audio encoder and after projecting the last hidden state.
\"\"\"
image_hidden_states: Optional[torch.FloatTensor] = None
audio_hidden_states: Optional[torch.FloatTensor] = None
@dataclass
@auto_docstring(
custom_intro=\"\"\"
Base class for Gemma3n causal language model (or autoregressive) outputs.
\"\"\"
)
class Gemma3nCausalLMOutputWithPast(ModelOutput):
r\"\"\"
loss (\`torch.FloatTensor\` of shape \`(1,)\`, *optional*, returned when \`labels\` is provided):
Language modeling loss (for next-token prediction).
logits (\`torch.FloatTensor\` of shape \`(batch_size, sequence_length, config.text_config.vocab_size)\`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (\`tuple(tuple(torch.FloatTensor))\`, *optional*, returned when \`use_cache=True\` is passed or when \`config.use_cache=True\`):
Tuple of \`tuple(torch.FloatTensor)\` of length \`config.n_layers\`, with each tuple having 2 tensors of shape
\`(batch_size, num_heads, sequence_length, embed_size_per_head)\`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
\`past_key_values\` input) to speed up sequential decoding.
image_hidden_states (\`torch.FloatTensor\`, *optional*):
A \`torch.FloatTensor\` of size \`(batch_size, num_images, sequence_length, hidden_size)\`.
image_hidden_states of the model produced by the vision encoder after projecting last hidden state.
audio_hidden_states (\`torch.FloatTensor\`, *optional*):
A \`torch.FloatTensor\` of size \`(batch_size, num_images, sequence_length, hidden_size)\`.
audio_hidden_states of the model produced by the audio encoder and after projecting the last hidden state.
\"\"\"
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
audio_hidden_states: Optional[torch.FloatTensor] = None
class Gemma3nRMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6, with_scale: bool = True):
super().__init__()
self.eps = eps
self.with_scale = with_scale
if self.with_scale:
self.weight = nn.Parameter(torch.ones(dim))
else:
self.register_buffer(\"weight\", torch.tensor(1.0), persistent=False)
def _norm(self, x):
return x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = self._norm(x.float()) * self.weight.float()
return output.type_as(x)
def extra_repr(self):
return f\"{tuple(self.weight.shape)}, eps={self.eps}\"
# ==== Audio Encoder ====
class Gemma3nAudioRelativePositionEmbedding(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.num_heads = self.config.conf_num_attention_heads
self.channels = self.config.hidden_size
self.head_dim = self.channels // self.num_heads
self.max_backward = max(0, self.config.conf_attention_context_left - 1)
self.max_forward = self.config.conf_attention_context_right
self.pos_proj = nn.Linear(self.channels, self.num_heads * self.head_dim, bias=False)
min_timescale = 1.0
max_timescale = 1.0e4
num_timescales = self.channels // 2
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / max(num_timescales - 1, 1)
inv_timescales = min_timescale * torch.exp(torch.arange(num_timescales) * -log_timescale_increment)
self.register_buffer(
\"inv_timescales\",
inv_timescales.float().unsqueeze(0).unsqueeze(0),
persistent=False,
)
def _get_timing_signal_1d_pos(self, position: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
position = position.float().unsqueeze(-1)
scaled_time = position * self.inv_timescales.to(device=position.device, dtype=torch.float32)
timing_signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=-1)
return timing_signal.type(dtype)
def _relative_shift(
self,
term_bd_before_shift: torch.Tensor,
batch_size: int,
num_heads: int,
num_query_blocks: int,
query_block_size: int,
key_context_size: int,
max_span_plus_1: int,
) -> torch.Tensor:
\"\"\"Performs the relative shift.
Args:
term_bd_before_shift: Tensor of shape [B, N, U, W, F_span]. batch_size
(B), num_heads (N), num_query_blocks (U), query_block_size (W),
key_context_size (C = W+L+R), max_span_plus_1 (F_span = L+R+1).
Returns:
Tensor of shape [B, N, U, W, C].
\"\"\"
# term_bd_before_shift shape: [B, N, U, W, F_span]
# Target shape after shift: [B, N, U, W, C]
# Padding amount for the last dimension (F_span) to become (C + 1)
# C = key_context_size
# F_span = max_span_plus_1
pad_amount_last_dim = (key_context_size + 1) - max_span_plus_1
# PyTorch F.pad expects (pad_left, pad_right, pad_top, pad_bottom ...)
# We only pad the last dimension on the right.
padding_tuple = (0, pad_amount_last_dim)
term_bd_padded = nn.functional.pad(term_bd_before_shift, padding_tuple)
# Shape after pad: [B, N, U, W, C+1]
# Reshape for slicing (emulating JAX\'s behavior)
# [B, N, U, W * (C+1)]
term_bd_reshaped = term_bd_padded.reshape(
(
batch_size,
num_heads,
num_query_blocks,
query_block_size * (key_context_size + 1),
)
)
# Slice to effective [B, N, U, W * C]
term_bd_sliced = term_bd_reshaped[:, :, :, : query_block_size * key_context_size]
# Reshape back to [B, N, U, W, C]
term_bd_shifted = term_bd_sliced.reshape(
(
batch_size,
num_heads,
num_query_blocks,
query_block_size,
key_context_size,
)
)
return term_bd_shifted
def forward(self, queries: torch.Tensor, keys: torch.Tensor) -> torch.Tensor:
# queries: [B, U, W, N, H] (batch, num_query_blocks, query_block_size, num_heads, head_dim)
# keys: [B, U, C, N, H] (batch, num_query_blocks, key_context_size, num_heads, head_dim)
# C = W + L + R (key_context_size)
# F_span = L + R + 1 (max_span + 1)
batch_size, num_query_blocks, query_block_size, num_heads, head_dim = queries.shape
_, _, key_context_size, _, _ = keys.shape
# Relative positions for sinusoidal embeddings: [L, L-1, ..., -R]
# Length is L+R+1 = self.max_span + 1
pos_indices = torch.arange(self.max_backward, -self.max_forward - 1, -1, device=queries.device).unsqueeze(
0
) # Shape [1, F_span]
max_span_plus_1 = pos_indices.shape[1] # F_span
sin_emb_timing_signal = self._get_timing_signal_1d_pos(
pos_indices, dtype=queries.dtype
) # Shape [1, F_span, self.channels]
# Project sinusoidal embeddings: [1, F_span, self.channels] -> [1, F_span, N*H]
projected_sin_emb = self.pos_proj(sin_emb_timing_signal)
# Reshape to [1, F_span, N, H] then squeeze to [F_span, N, H]
sin_emb = projected_sin_emb.reshape(1, max_span_plus_1, self.num_heads, self.head_dim).squeeze(
0
) # Shape [F, N, H]
# term_ac: Query-Key content interaction
# queries: [B, U, W, N, H] -> permute to [B, N, U, W, H] for matmul
# keys: [B, U, C, N, H] -> permute to [B, N, U, H, C] for matmul
queries_p = queries.permute(0, 3, 1, 2, 4) # [B, N, U, W, H]
keys_p_t = keys.permute(0, 3, 1, 4, 2) # [B, N, U, H, C]
term_ac = torch.matmul(queries_p, keys_p_t) # [B, N, U, W, C]
# term_bd: Query-Position interaction
# Original einsum: term_bd_unshifed = torch.einsum(\'buwnh,fnh->bnuwf\', queries, sin_emb)
# queries shape: [B, U, W, N, H]
# sin_emb shape: [F, N, H]
# Target output shape: [B, N, U, W, F]
# Permute queries to [B, N, U, W, H] for easier broadcasting with sin_emb
q_permuted = queries.permute(0, 3, 1, 2, 4)
# Permute sin_emb to [N, H, F] to prepare for matmul
# sin_emb original is [F, N, H]
s_permuted = sin_emb.permute(1, 2, 0) # Shape: [N, H, F]
# Reshape queries for matmul: [B, N, U*W, H]
q_reshaped = q_permuted.reshape(batch_size, num_heads, num_query_blocks * query_block_size, head_dim)
# Perform matmul: [B, N, U*W, H] @ [N, H, F]
# s_permuted ([N, H, F]) will be broadcast to [B, N, H, F]
# Result: [B, N, U*W, F]
term_bd_unshifed_matmul = torch.matmul(q_reshaped, s_permuted)
# Reshape to target [B, N, U, W, F]
term_bd_unshifed = term_bd_unshifed_matmul.reshape(
batch_size,
num_heads,
num_query_blocks,
query_block_size,
max_span_plus_1,
)
# Apply relative shift to term_bd_unshifed
term_bd_shifted = self._relative_shift(
term_bd_unshifed,
batch_size,
num_heads,
num_query_blocks,
query_block_size,
key_context_size,
max_span_plus_1,
) # Shape [B, N, U, W, C]
return term_ac + term_bd_shifted
class Gemma3nAudioAttention(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.num_heads = self.config.conf_num_attention_heads
self.hidden_size = self.config.hidden_size
self.head_dim = self.hidden_size // self.num_heads
self.chunk_size = self.config.conf_attention_chunk_size
self.max_future_horizon = self.config.conf_attention_context_right
self.max_past_horizon = max(0, self.config.conf_attention_context_left - 1)
self.attention_logits_soft_cap = self.config.conf_attention_logit_cap
self.context_size = self.chunk_size + self.max_past_horizon + self.max_future_horizon
self.relative_position_embedding = Gemma3nAudioRelativePositionEmbedding(config)
self.per_dim_scale = nn.Parameter(torch.zeros((self.head_dim,)))
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
q_scale = self.head_dim**-0.5
r_softplus_0 = 1.0 / torch.nn.functional.softplus(torch.tensor(0.0))
self.register_buffer(\"q_scale\", (q_scale * r_softplus_0).clone().detach(), persistent=False)
lower_causal_mask = torch.tril(
torch.ones((self.context_size, self.chunk_size), dtype=torch.bool),
diagonal=0,
).T
upper_causal_mask = torch.tril(
torch.ones((self.chunk_size, self.context_size), dtype=torch.bool),
diagonal=self.max_past_horizon + self.max_future_horizon,
)
local_causal_valid_mask = torch.ones((self.chunk_size, self.context_size), dtype=torch.bool)
local_causal_valid_mask = local_causal_valid_mask * lower_causal_mask * upper_causal_mask
self.register_buffer(\"local_causal_valid_mask\", local_causal_valid_mask, persistent=False)
self.register_buffer(
\"softcap\",
torch.tensor(self.attention_logits_soft_cap).float(),
persistent=False,
)
def _pad_dim1(self, x: torch.Tensor, pad_left: int, pad_right: int) -> torch.Tensor:
batch, _, *tail_shape = x.shape
left = x.new_zeros((batch, pad_left, *tail_shape))
right = x.new_zeros((batch, pad_right, *tail_shape))
x = torch.cat([left, x, right], dim=1)
return x
def _convert_to_block(self, hidden_states: torch.Tensor) -> torch.Tensor:
\"\"\"Turns a sequence to non overlapping blocks.
Args:
hidden_states: a tensor of [batch, time, ...].
Returns:
A tensor of [batch, num_blocks, block_size, ...], with necessary
paddings,
where output[:, i, ...] are x[:, i*block_size:(i+1)*block_size, ...].
\"\"\"
shape = hidden_states.shape
b, t = shape[:2]
num_blocks = (t + self.chunk_size - 1) // self.chunk_size
if (padding_len := num_blocks * self.chunk_size - t) > 0:
hidden_states = self._pad_dim1(hidden_states, 0, padding_len)
permute_dims = (b, num_blocks, self.chunk_size) + shape[2:]
hidden_states = hidden_states.reshape(permute_dims).contiguous()
return hidden_states
def _extract_block_context(self, hidden_states: torch.Tensor) -> torch.Tensor:
\"\"\"Extracts temporal context for every block.
Args:
hidden_states: a tensor of [batch, time, ...].
Returns:
A tensor of [batch, num_blocks, context_size, ...], with necessary
paddings,
where context_size = block_size + left_context + right_context,
and output[:, i, ...] are x[:, start-left_context:end+right_context,
...],
start = i * block_size, end = (i + 1) * block_size.
\"\"\"
pad_left = self.max_past_horizon
# The JAX equivalent padding for signal.frame with pad_mode=\'valid\' is
# (left_context, right_context + block_size - 1) on the time dimension.
# PyTorch\'s _pad_dim1 applies padding symmetrically if only one value is given,
# or (pad_dim_start, pad_dim_end) if two are given.
# Our _pad_dim1(x, pad_left, pad_right) pads dim -2 (time for [B,T,N,H])
# or dim 1 (time for [B,T]).
# The current pad_right calculation matches the JAX effective padding.
pad_right = self.max_future_horizon + self.chunk_size - 1
hidden_states = self._pad_dim1(hidden_states, pad_left, pad_right)
frame_len = self.context_size
frame_step = self.chunk_size
# Directly use unfold without the subframe_factor logic
# x.unfold(dimension, size, step)
# dimension=1 (time dimension, assuming x is [B, T_padded, ...])
# size=frame_len (context_size)
# step=frame_step (chunk_size)
x_unfolded = hidden_states.unfold(dimension=1, size=frame_len, step=frame_step)
# If x was [B, T_padded], x_unfolded is [B, num_blocks, frame_len]
# If x was [B, T_padded, N, H], x_unfolded is [B, num_blocks, N, H, frame_len]
# We want to match JAX\'s typical output for such operations which might be
# [B, num_blocks, frame_len, N, H] if N, H are present.
# The relative_position_embedding expects keys as [B, U, C, N, H].
# If x_unfolded is [B, U, N, H, C(frame_len)], we need to move C.
if hidden_states.ndim > 2 and x_unfolded.ndim > 3: # Check if inner dimensions (like N, H) exist
# Current shape after unfold for [B, T_pad, N, H] is [B, U, N, H, C]
# Target shape for keys in RPE: [B, U, C, N, H]
x_unfolded = torch.movedim(x_unfolded, source=-1, destination=2)
return x_unfolded.contiguous()
def forward(self, hidden_states: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor:
# sl.Dense uses jax.numpy.einsum(\"...a,abcd->...bcd\") and jax.numpy.select()
qkv_shape = (*hidden_states.shape[:-1], self.num_heads, self.head_dim)
query_states = self.q_proj(hidden_states).reshape(qkv_shape).contiguous()
key_states = self.k_proj(hidden_states).reshape(qkv_shape).contiguous()
value_states = self.v_proj(hidden_states).reshape(qkv_shape).contiguous()
per_dim_scale_sp = torch.nn.functional.softplus(self.per_dim_scale)
broadcast_shape = (1, 1, 1, self.head_dim)
per_dim_scale_sp_broadcast = per_dim_scale_sp.view(broadcast_shape)
query_states = query_states * self.q_scale * per_dim_scale_sp_broadcast
batch_size, q_time = query_states.shape[:2]
query_blocks = self._convert_to_block(query_states)
key_blocks = self._extract_block_context(key_states)
value_blocks = self._extract_block_context(value_states)
num_query_blocks = query_blocks.shape[1]
# 1. Create a mask indicating originally valid positions.
original_valid_mask = ~mask # True for valid, False for padded
# 2. Extract blocks from this validity mask.
extracted_valid_mask_blocks = self._extract_block_context(original_valid_mask)
# If subframe_factor was used in _extract_block_context for a [B, T] input mask,
# the shape might be [B, U, C/SF, SF]. Reshape to [B, U, C].
# batch_size and num_query_blocks are known from query_blocks.
# self.context_size is C.
if (
extracted_valid_mask_blocks.ndim == 4
and extracted_valid_mask_blocks.shape[2] * extracted_valid_mask_blocks.shape[3] == self.context_size
):
extracted_valid_mask_blocks = extracted_valid_mask_blocks.reshape(
batch_size, num_query_blocks, self.context_size
)
# After potential reshape, ensure it\'s [B, U, C] if it was from a [B,T] mask.
# This assertion might be too strict if _extract_block_context handles higher-rank inputs differently,
# but for the mask case, this should hold.
if extracted_valid_mask_blocks.shape != (
batch_size,
num_query_blocks,
self.context_size,
):
raise ValueError(
\"Shape of extracted_valid_mask_blocks\"
f\" {extracted_valid_mask_blocks.shape} is not ({batch_size},\"
f\" {num_query_blocks}, {self.context_size}) after potential reshape.\"
)
# 3. Expand dimensions for broadcasting with logits and causal mask.
# Target shape for broadcasting with logits [B,N,U,W,C]
# extracted_valid_mask_blocks to [B, 1, U, 1, C]
condition_from_input_validity = extracted_valid_mask_blocks.unsqueeze(1).unsqueeze(-2)
# self.local_causal_valid_mask is [W, C], True where allowed by local window.
# Expand to [1, 1, 1, W, C]
condition_from_causality = self.local_causal_valid_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0)
# 4. Combine the two conditions.
# final_condition will be True where a key is *both* originally valid *and* causally accessible.
# Broadcasts to [B, 1, U, W, C]
final_condition_for_where = torch.logical_and(
condition_from_input_validity,
condition_from_causality.to(condition_from_input_validity.device), # Ensure same device
)
# Embed queries and keys
logits = self.relative_position_embedding(query_blocks, key_blocks)
# Apply attention logit softcap
# Ensure softcap is on the same device as logits
softcap_val = self.softcap.to(logits.device)
logits = logits / softcap_val
logits = torch.tanh(logits)
logits = logits * softcap_val
# Apply the combined mask.
# final_condition_for_where will broadcast with logits [B,N,U,W,C]
logits = torch.where(final_condition_for_where, logits, torch.finfo(logits.dtype).min)
probabilities = torch.nn.functional.softmax(logits, dim=-1, dtype=torch.float32).to(dtype=value_blocks.dtype)
# context_vectors is adapted from jax.numpy.einsum(\"BNuwc,BucNH->BuwNH\", ...)
b_dim, n_dim, u_dim, w_dim, c_dim = probabilities.shape
h_dim = value_blocks.shape[-1]
prob_bun = probabilities.permute(0, 2, 1, 3, 4).reshape(-1, w_dim, c_dim)
v_bun = value_blocks.permute(0, 1, 3, 2, 4).reshape(-1, c_dim, h_dim)
result_bmm = torch.bmm(prob_bun, v_bun)
context_vectors = result_bmm.reshape(b_dim, u_dim, n_dim, w_dim, h_dim).permute(0, 1, 3, 2, 4)
context_vectors = context_vectors.reshape(
(
batch_size,
num_query_blocks * self.chunk_size,
self.num_heads,
self.head_dim,
)
)
context_vectors = context_vectors[:, :q_time]
return context_vectors
class Gemma3nAudioCumulativeGroupNorm(nn.Module):
\"\"\"Applies Group Normalization cumulatively over the time dimension.
This layer normalizes the input by calculating the mean and variance
cumulatively over the time dimension (dim 1). The statistics are computed
over all feature dimensions (specified by \`feature_dims\` and \`num_channels\`)
for elements marked as valid by the optional \`mask\`.
If a \`mask\` is provided (True for valid, False for invalid/padded),
invalid time steps do not contribute to the statistics calculation, and
their corresponding output values are zeroed out.
Scale and bias, if enabled, are applied per-channel (last dimension).
This behavior is similar to JAX\'s \`GroupNormalization\` with \`num_groups=1\`
and \`cumulative=True\`.
\"\"\"
def __init__(
self,
num_channels: int, # Number of channels (size of the last dimension)
feature_dims: Sequence[int], # Sizes of non-channel feature dimensions, e.g., (H, W) for input [B,T,H,W,C]
eps: float = 1e-3,
):
super().__init__()
self.num_channels = num_channels
self.feature_dims = tuple(feature_dims)
self.eps = eps
# Scale parameter depends only on the channel dimension
self.weight = nn.Parameter(torch.ones(num_channels))
# Axes for normalization: all dimensions except Batch (0) and Time (1).
# For input [B, T, *feature_dims, C], these are dims from 2 onwards.
self.reduction_axes = tuple(range(2, 2 + len(self.feature_dims) + 1))
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
\"\"\"Applies cumulative group norm, optionally using a mask.
Args:
hidden_states: Input tensor, shape [B, T, *feature_dims, C].
Returns:
Normalized tensor with the same shape as x.
\"\"\"
expected_input_suffix = self.feature_dims + (self.num_channels,)
if hidden_states.shape[2:] != expected_input_suffix:
raise ValueError(
f\"Input tensor shape suffix {hidden_states.shape[2:]} does not match expected\"
f\" suffix (feature_dims + num_channels) {expected_input_suffix}\"
)
input_dtype = hidden_states.dtype
# Calculations are performed in float32 for numerical stability.
calc_dtype = torch.float32
x_calc = hidden_states.to(calc_dtype)
# Prepare a broadcastable mask (\`mask_calc\`).
# If no mask is provided, treat all elements as valid
# (mask_calc is all ones).
# Otherwise, expand the [B, T] mask to [B, T, 1, ..., 1] for broadcasting.
mask_calc = torch.ones_like(x_calc, dtype=calc_dtype)
# Cumulative Statistics Calculation
# 1. Sum of values over reduction axes at each time step.
sum_values_at_t = torch.sum(x_calc, dim=self.reduction_axes, keepdim=True)
# 2. Cumulative sum of values over time.
cum_sum_values = torch.cumsum(sum_values_at_t, dim=1)
# 3. Count of valid elements in the normalization group at each time step.
# (A \"group\" here consists of all features at a given Batch, Time).
elements_in_group_at_t = torch.sum(mask_calc, dim=self.reduction_axes, keepdim=True)
# 4. Cumulative count of valid elements over time.
cum_count_elements = torch.cumsum(elements_in_group_at_t, dim=1)
# Avoid division by zero if all preceding elements were masked.
safe_cum_count_elements = torch.clamp(cum_count_elements, min=1.0)
# 5. Cumulative mean.
cum_mean = cum_sum_values / safe_cum_count_elements
# 6. Sum of squared differences from the cumulative mean.
# Only sum for valid elements: (x_calc - cum_mean)^2 * mask_calc.
# Using x_calc here for the difference, as cum_mean already accounts for masking.
squared_diff_from_mean = (x_calc - cum_mean).pow(2)
sum_sq_diff_at_t = torch.sum(squared_diff_from_mean, dim=self.reduction_axes, keepdim=True)
# 7. Cumulative sum of squared differences over time.
cum_sum_sq_diff = torch.cumsum(sum_sq_diff_at_t, dim=1)
# 8. Cumulative variance.
cum_variance = cum_sum_sq_diff / safe_cum_count_elements
# Normalize the input using the calculated cumulative statistics:
# (x - E[x]) / sqrt(Var[x] + eps)
normalized_x = (x_calc - cum_mean) * torch.rsqrt(cum_variance + self.eps)
# Apply affine transformation (scale and bias) if enabled.
# Scale and bias are applied per-channel (last dimension).
scale = self.weight.to(calc_dtype)
# Reshape for broadcasting: [C] -> [1, ..., 1, C]
scale_view_shape = [1] * (hidden_states.dim() - 1) + [self.num_channels]
normalized_x = normalized_x * scale.view(scale_view_shape)
# Zero out outputs for time steps that were originally masked (where mask_calc is 0).
# This ensures padded/invalid positions in the input result in zero output.
final_output = normalized_x * mask_calc
return final_output.to(input_dtype)
class Gemma3nAudioSSCPConvBlock(nn.Module):
\"\"\"A single convolution block for the SubSampleConvProjection.
This block consists of a 2D convolution, followed by CumulativeGroupNorm,
and a ReLU activation. It handles manual padding for the convolution.
\"\"\"
def __init__(
self,
config: Gemma3nAudioConfig,
idx: int,
input_freq_dim: int, # Changed from input_spatial_dim
manual_padding: tuple[int, int, int, int] = (0, 0, 0, 0),
):
super().__init__()
self.config = config
self.manual_padding = manual_padding
# in_channels is 1 for the first block, or C_out from previous block\'s conv
in_channels = 1 if idx == 0 else self.config.sscp_conv_channel_size[idx - 1]
out_channels = self.config.sscp_conv_channel_size[idx]
kernel_h, kernel_w = self.config.sscp_conv_kernel_size[idx]
stride_h, stride_w = self.config.sscp_conv_stride_size[idx]
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=(
kernel_h,
kernel_w,
), # Kernel (kH, kW) operates on (Time, Freq_dim)
stride=(stride_h, stride_w),
padding=(0, 0), # Manual padding is used
bias=False,
)
# Calculate output frequency dimension (f_out_conv) after this convolution.
# input_freq_dim is the unpadded width (feature dimension).
# self.manual_padding is (pad_F_left, pad_F_right, pad_T_top, pad_T_bottom)
f_in_padded = input_freq_dim + self.manual_padding[0] + self.manual_padding[1]
f_out_conv = (f_in_padded - kernel_w) // stride_w + 1
self.norm = Gemma3nAudioCumulativeGroupNorm(
num_channels=out_channels, # Channels of the conv output
feature_dims=(f_out_conv,), # The frequency dimension size after conv
eps=self.config.sscp_conv_group_norm_eps,
)
self.activation = nn.ReLU()
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor:
# Input audio_encodings is [B, C_in, T_in, F_in] (e.g., C_in=1)
# manual_padding is (pad_F_left, pad_F_right, pad_T_top, pad_T_bottom)
# F.pad applies to last two dims: F_in then T_in
audio_encodings_padded = F.pad(audio_encodings, self.manual_padding, mode=\"constant\", value=0.0)
# Expected padded shape for F_in, k_w=3, pad_F=(1,1) -> F_padded = F_in+2
# Expected padded shape for T_in, k_h=3, pad_T=(0,2) -> T_padded = T_in+2
audio_encodings_conv = self.conv(audio_encodings_padded)
# Expected conv output shape: [B, C_out, T_out, F_out]
# Input to norm is [B, T_out, F_out, C_out]
x_for_norm = audio_encodings_conv.permute(0, 2, 3, 1).contiguous()
x_normed = self.norm(x_for_norm)
# Output of norm is [B, T_out, F_out, C_out], permute back to [B, C_out, T_out, F_out]
audio_encodings_normed = x_normed.permute(0, 3, 1, 2).contiguous()
return self.activation(audio_encodings_normed)
class Gemma3nAudioSubSampleConvProjection(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
current_f_for_block_input = config.input_feat_size # Start with original feature dim
calculated_block_padding = []
calculated_f_out_dims = [] # Tracking frequency dimension output sizes
for i in range(2): # Assuming 2 conv layers as per sscp_conv_... arrays
kernel_h, kernel_w = config.sscp_conv_kernel_size[i]
stride_h, stride_w = config.sscp_conv_stride_size[i]
# Padding for Time (Height for Conv2d) - REVERSE_CAUSAL like
# JAX \'reverse_causal\' padding is (0, kernel_size - 1)
pad_t_top = 0
pad_t_bottom = kernel_h - 1
# Frequency Padding (Width for Conv2d)
# Based on JAX effective padding (1,1) for F_in=10, K_w=3, S_w=2
# and the successful test configuration.
# If kernel/stride/input_freq for frequency changes, this might need re-evaluation
# to match generic JAX \'SAME\' behavior if it differs.
pad_f_left = 1
pad_f_right = 1
manual_padding_tuple = (
pad_f_left,
pad_f_right,
pad_t_top,
pad_t_bottom,
)
calculated_block_padding.append(manual_padding_tuple)
# Calculate output frequency dimension after this convolution
# This uses the actual padding applied and kernel/stride.
f_in_padded = current_f_for_block_input + pad_f_left + pad_f_right
f_out_after_conv = (f_in_padded - kernel_w) // stride_w + 1 # Assuming dilation_w = 1
calculated_f_out_dims.append(f_out_after_conv)
current_f_for_block_input = f_out_after_conv
self.conv_0 = Gemma3nAudioSSCPConvBlock(
idx=0,
input_freq_dim=config.input_feat_size, # Pass original feature dim
config=config,
manual_padding=calculated_block_padding[0],
)
self.conv_1 = Gemma3nAudioSSCPConvBlock(
idx=1,
input_freq_dim=calculated_f_out_dims[0], # Output freq dim from conv_0
config=config,
manual_padding=calculated_block_padding[1],
)
final_c_out = config.sscp_conv_channel_size[-1]
final_f_out = calculated_f_out_dims[-1] # Final frequency dimension
self.input_proj_in_features = final_c_out * final_f_out
self.input_proj_linear = nn.Linear(self.input_proj_in_features, self.config.hidden_size, bias=False)
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor:
# audio_encodings is [B, T, F_in]
# Reshape to [B, 1, T, F_in] (Batch, Channels=1, Height=Time, Width=F_in)
audio_encodings_reshaped = audio_encodings.unsqueeze(1)
x = self.conv_0(audio_encodings_reshaped)
x = self.conv_1(x)
# x from conv_1 is [B, C_out_1, T_out_1, F_out_1]
b, c_out, t_out, f_out = x.shape
# Permute to [B, T_out_1, F_out_1, C_out_1] then flatten F_out_1 and C_out_1
x_permuted = x.permute(0, 2, 3, 1).contiguous()
output_flattened = x_permuted.view(b, t_out, f_out * c_out)
output = self.input_proj_linear(output_flattened)
return output
class Gemma3nAudioConformerAttention(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.post_in_features = self.config.hidden_size
self.register_buffer(\"gradient_clipping\", torch.tensor(self.config.gradient_clipping), persistent=False)
self.pre_attn_norm = Gemma3nRMSNorm(self.config.hidden_size)
self.attn = Gemma3nAudioAttention(config)
self.post = nn.Linear(self.post_in_features, self.config.hidden_size, bias=False)
self.post_norm = Gemma3nRMSNorm(self.config.hidden_size)
def forward(self, audio_encodings: torch.Tensor, audio_mel_mask: torch.BoolTensor) -> torch.Tensor:
audio_encodings_input_to_attn = audio_encodings
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
audio_encodings_norm = self.pre_attn_norm(audio_encodings)
# Output of self.attn is [B, T, NumHeads, HeadDim]
audio_encodings_attn_out = self.attn(audio_encodings_norm, audio_mel_mask)
# Reshape from [B, T, NumHeads, HeadDim] to [B, T, NumHeads * HeadDim]
# NumHeads * HeadDim = hidden_size
b, t, num_heads, head_dim = audio_encodings_attn_out.shape
audio_encodings_reshaped = audio_encodings_attn_out.reshape(b, t, num_heads * head_dim)
audio_encodings = self.post(audio_encodings_reshaped)
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
return audio_encodings_input_to_attn + self.post_norm(audio_encodings)
class Gemma3nAudioConformerFeedForward(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.register_buffer(\"gradient_clipping\", torch.tensor(self.config.gradient_clipping), persistent=False)
self.pre_layer_norm = Gemma3nRMSNorm(self.config.hidden_size)
self.ffw_layer_1 = nn.Linear(self.config.hidden_size, self.config.hidden_size * 4, bias=False)
self.ffw_layer_2 = nn.Linear(self.config.hidden_size * 4, self.config.hidden_size, bias=False)
self.post_layer_norm = Gemma3nRMSNorm(self.config.hidden_size)
self.post_layer_scale = torch.tensor(self.config.conf_residual_weight)
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor:
residual = audio_encodings
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
audio_encodings = self.pre_layer_norm(audio_encodings)
audio_encodings: torch.Tensor = self.ffw_layer_1(audio_encodings)
audio_encodings = nn.functional.silu(audio_encodings)
audio_encodings: torch.Tensor = self.ffw_layer_2(audio_encodings)
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
audio_encodings = self.post_layer_norm(audio_encodings)
return residual + (audio_encodings * self.post_layer_scale)
class Gemma3nAudioConformerLightConv1d(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.pre_layer_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
self.linear_start = nn.Linear(self.config.hidden_size, self.config.hidden_size * 2, bias=False)
self.depthwise_conv1d = nn.Conv1d(
in_channels=self.config.hidden_size,
out_channels=self.config.hidden_size,
kernel_size=self.config.conf_conv_kernel_size,
stride=1,
padding=0, # Manual causal padding
groups=self.config.hidden_size, # Depthwise
bias=False,
)
self.register_buffer(\"gradient_clipping\", torch.tensor(self.config.gradient_clipping), persistent=False)
self.conv_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
self.linear_end = nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False)
self.causal_padding = self.config.conf_conv_kernel_size - 1
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor:
audio_encodings_residual = audio_encodings # Save for residual connection
audio_encodings = self.pre_layer_norm(audio_encodings)
audio_encodings = self.linear_start(audio_encodings)
audio_encodings = torch.nn.functional.glu(audio_encodings, dim=-1)
# Permute for Conv1d: [B, T, D] -> [B, D, T]
audio_encodings_permuted = audio_encodings.permute(0, 2, 1)
# Apply manual causal padding
audio_encodings_permuted_padded = F.pad(audio_encodings_permuted, (self.causal_padding, 0))
audio_encodings = self.depthwise_conv1d(audio_encodings_permuted_padded)
# Permute back: [B, D, T_out] -> [B, T_out, D]
audio_encodings = audio_encodings.permute(0, 2, 1)
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
audio_encodings = self.conv_norm(audio_encodings)
audio_encodings = nn.functional.silu(audio_encodings)
audio_encodings = self.linear_end(audio_encodings)
output = audio_encodings + audio_encodings_residual
return output
class Gemma3nAudioConformerBlock(nn.Module):
def __init__(self, config: Gemma3nAudioConfig):
super().__init__()
self.config = config
self.ffw_layer_start = Gemma3nAudioConformerFeedForward(self.config)
self.attention = Gemma3nAudioConformerAttention(self.config)
self.lconv1d = Gemma3nAudioConformerLightConv1d(self.config)
self.ffw_layer_end = Gemma3nAudioConformerFeedForward(self.config)
self.register_buffer(\"gradient_clipping\", torch.tensor(self.config.gradient_clipping), persistent=False)
self.norm = Gemma3nRMSNorm(self.config.hidden_size)
def forward(self, audio_encodings: torch.Tensor, audio_mel_mask: torch.BoolTensor) -> torch.Tensor:
audio_encodings = self.ffw_layer_start(audio_encodings)
audio_encodings = self.attention(audio_encodings, audio_mel_mask)
validity_mask_for_lconv = ~audio_mel_mask # True for valid
audio_encodings_for_lconv_input = audio_encodings * validity_mask_for_lconv.unsqueeze(-1).to(
audio_encodings.dtype
)
audio_encodings = self.lconv1d(audio_encodings_for_lconv_input)
audio_encodings = self.ffw_layer_end(audio_encodings)
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping)
output = self.norm(audio_encodings)
return output
class Gemma3nAudioEncoder(PreTrainedModel):
\"\"\"An audio encoder based on the [Universal Speech Model](https://arxiv.org/abs/2303.01037) architecture.\"\"\"
config_class = Gemma3nAudioConfig
main_input_name = \"audio_mel\"
def __init__(self, config: Gemma3nAudioConfig):
super().__init__(config)
self.config = config
self.subsample_conv_projection = Gemma3nAudioSubSampleConvProjection(config)
self.conformer = nn.ModuleList(
[Gemma3nAudioConformerBlock(config) for _ in range(config.conf_num_hidden_layers)]
)
def forward(
self, audio_mel: torch.Tensor, audio_mel_mask: torch.BoolTensor
) -> tuple[torch.Tensor, torch.BoolTensor]:
\"\"\"Encodes a batch of MELs.
Args:
audio_mel: a torch.Tensor of shape [batch, num_frames, num_channels,
mel_bins].
Returns:
audio_encodings: a torch.Tensor of shape
\`[batch_size, self.config.audio_soft_tokens_per_image,
self.config.audio_config.hidden_size]\`
audio_mel_mask: a torch.BoolTensor of shape [batch, num_frames].
\"\"\"
audio_encodings = self.subsample_conv_projection(audio_mel) # audio_encodings: [B, T_sub, D]
# Subsample the input audio_mel_mask to match the time dimension of audio_encodings (T_sub)
t_sub = audio_encodings.shape[1]
time_stride_product = 1
for stride_pair_idx in range(len(self.config.sscp_conv_stride_size)):
time_stride_product *= self.config.sscp_conv_stride_size[stride_pair_idx][0]
# Create indices for gathering from the original mask.
# These indices map to original time steps corresponding to the start of each
# receptive field in the subsampled output.
indices = torch.arange(t_sub, device=audio_mel_mask.device) * time_stride_product
indices = torch.clamp(indices, max=audio_mel_mask.shape[1] - 1) # Ensure indices are valid
# Expand indices for batch compatibility if B > 1 and indices is 1D.
if audio_mel_mask.ndim > 1 and indices.ndim == 1:
indices = indices.unsqueeze(0).expand(audio_mel_mask.shape[0], -1) # [B, T_sub]
elif (
audio_mel_mask.ndim == indices.ndim
and audio_mel_mask.shape[0] == 1
and indices.shape[0] != 1
and t_sub == indices.shape[0]
):
# Handle case where B=1 but indices became [T_sub] instead of [1, T_sub]
indices = indices.unsqueeze(0)
current_mask = torch.gather(audio_mel_mask, 1, indices) # [B, T_sub]
for block in self.conformer:
audio_encodings = block(audio_encodings, current_mask) # Pass the processed mask
if self.config.conf_reduction_factor > 1:
audio_encodings = audio_encodings[:, :: self.config.conf_reduction_factor]
# Reduce the mask as well
current_mask = current_mask[:, :: self.config.conf_reduction_factor]
audio_encodings = audio_encodings.masked_fill(current_mask.unsqueeze(-1), 0.0)
return audio_encodings, current_mask
class Gemma3nTextScaledWordEmbedding(nn.Embedding):
\"\"\"
This module overrides nn.Embeddings\' forward by multiplying with embeddings scale.
\"\"\"
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: float = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.register_buffer(\"embed_scale\", torch.tensor(embed_scale), persistent=False)
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale.to(self.weight.dtype)
class Gemma3nTextLaurelBlock(nn.Module):
\"\"\"Learned Augmented Residual Layer\"\"\"
def __init__(self, config: Gemma3nTextConfig):
super().__init__()
self.config = config
self.linear_left = nn.Linear(self.config.hidden_size, self.config.laurel_rank, bias=False)
self.linear_right = nn.Linear(self.config.laurel_rank, self.config.hidden_size, bias=False)
self.post_laurel_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
laurel_hidden_states: torch.Tensor = self.linear_left(hidden_states)
laurel_hidden_states: torch.Tensor = self.linear_right(laurel_hidden_states)
normed_laurel_hidden_states = self.post_laurel_norm(laurel_hidden_states)
return hidden_states + normed_laurel_hidden_states
class Gemma3nTextMLP(nn.Module):
def __init__(self, config: Gemma3nTextConfig, layer_idx: int = 0):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size[layer_idx]
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_activation]
self.activation_sparsity = config.activation_sparsity_pattern[layer_idx]
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
gate_proj = self.gate_proj(hidden_states)
if self.activation_sparsity > 0.0:
gate_proj = self._gaussian_topk(gate_proj)
activations = self.act_fn(gate_proj)
up_proj = self.up_proj(hidden_states)
down_proj = self.down_proj(activations * up_proj)
return down_proj
def _gaussian_topk(self, inputs: torch.Tensor) -> torch.Tensor:
target_sparsity_tensor = torch.tensor(self.activation_sparsity, dtype=torch.float32, device=inputs.device)
# normal_dist and std_multiplier are adapted from jax.scipy.stats.norm.ppf().
#
# References:
# * https://docs.jax.dev/en/latest/_autosummary/jax.scipy.stats.norm.ppf.html
# * https://pytorch.org/docs/stable/distributions.html#torch.distributions.normal.Normal
# * https://pytorch.org/docs/stable/distributions.html#torch.distributions.transformed_distribution.TransformedDistribution.icdf
normal_dist = torch.distributions.normal.Normal(0, 1)
std_multiplier: torch.Tensor = normal_dist.icdf(target_sparsity_tensor)
std_multiplier = std_multiplier.type(inputs.dtype)
inputs_mean = torch.mean(inputs, dim=-1, keepdim=True)
inputs_std = torch.std(inputs, dim=-1, keepdim=True, unbiased=False)
cutoff_x = inputs_mean + inputs_std * std_multiplier
return nn.functional.relu(inputs - cutoff_x)
class Gemma3nTextAltUp(nn.Module):
\"\"\"Alternating Updates (AltUp)
The AltUp module wraps transformer layers. The \`predict\` step modifies the
input to the transformer layer, and the \`correct\` step propagates the output
of the transformer layer to the sparsely updated dimensions.
See more in the research paper:
https://proceedings.neurips.cc/paper_files/paper/2023/file/f2059277ac6ce66e7e5543001afa8bb5-Paper-Conference.pdf
\"\"\"
def __init__(self, config: Gemma3nTextConfig):
super().__init__()
self.config = config
self.correct_output_scale = nn.Parameter(torch.zeros(self.config.hidden_size))
self.correction_coefs = nn.Linear(self.config.altup_num_inputs, self.config.altup_num_inputs, bias=False)
self.prediction_coefs = nn.Linear(self.config.altup_num_inputs, self.config.altup_num_inputs**2, bias=False)
self.modality_router = nn.Linear(self.config.hidden_size, self.config.altup_num_inputs, bias=False)
self.router_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps)
self.register_buffer(\"router_input_scale\", torch.tensor(self.config.hidden_size**-1.0), persistent=False)
def compute_router_modalities(self, x: torch.Tensor) -> torch.Tensor:
router_inputs = self.router_norm(x) * self.router_input_scale
routed = self.modality_router(router_inputs)
return torch.tanh(routed.float()).type_as(x)
def predict(self, hidden_states: torch.Tensor) -> torch.Tensor:
\"\"\"Predicts the output of a layer using a trainable map.
Args:
hidden_states: A 4D tensor of shape \`[num_altup_inputs, batch_size, num_tokens, hidden_size]\` derived by
stacking the input embeddings and preprocessing the last \`num_altup_inputs - 1\` matrices.
Returns:
A 4D tensor of shape \`[num_altup_inputs, batch_size, num_tokens, hidden_size]\` containing the predictions.
\"\"\"
modalities = self.compute_router_modalities(hidden_states[self.config.altup_active_idx])
if self.training and self.config.altup_coef_clip is not None:
self.prediction_coefs.weight.data.clamp_(-self.config.altup_coef_clip, self.config.altup_coef_clip)
# Project and then transpose all 2D matrices contained so that mulmat gives the correct result
all_coefs: torch.Tensor = (
self.prediction_coefs(modalities)
.reshape(*modalities.shape[:-1], self.config.altup_num_inputs, self.config.altup_num_inputs)
.permute(0, 1, 3, 2)
)
# permute hidden_states to [batch_size, num_tokens, hidden_size, altup_num_inputs]
predictions = torch.matmul(hidden_states.permute(1, 2, 3, 0), all_coefs)
predictions = predictions.permute(3, 0, 1, 2) # undo the permute
predictions += hidden_states # add the original input
return predictions.contiguous().type_as(hidden_states)
def correct(self, predictions: torch.Tensor, activated: torch.Tensor) -> torch.Tensor:
\"\"\"Corrects the predictions relative to the
Args:
predictions: A 4D tensor of shape \`[num_altup_inputs, batch_size, num_tokens, hidden_size]\` derived by
stacking the input embeddings and preprocessing the last \`num_altup_inputs - 1\` matrices.
activated: A 3D tensor of shape \`[batch_size, num_tokens, hidden_size]\` containing the activated inputs.
Returns:
A 4D tensor of shape \`[num_altup_inputs, batch_size, num_tokens, hidden_size]\` correcting the original
predictions relative to the activated input embeddings.
\"\"\"
modalities = self.compute_router_modalities(activated)
innovation = activated - predictions[self.config.altup_active_idx] # (batch, num_tokens, hidden_size)
innovation = innovation.repeat(self.config.altup_num_inputs, 1, 1, 1) # Repeat on dim0 to match predictions
if self.config.altup_coef_clip is not None:
self.correction_coefs.weight.data.clamp_(-self.config.altup_coef_clip, self.config.altup_coef_clip)
# all_coefs adapted from jax.numpy.einsum(\"...p,pi->...i\", ...)
# Permute to (altup_num_inputs, batch_size, num_tokens) as the last dim is a scalar applied to each altup input
# and expand on dim1 for broadcastability
all_coefs: torch.Tensor = self.correction_coefs(modalities) + 1.0
all_coefs = all_coefs.permute(2, 0, 1).unsqueeze(-1)
corrected = torch.mul(innovation, all_coefs)
corrected += predictions # add the original input
return corrected.contiguous().type_as(activated)
def forward(self, corrected: torch.Tensor) -> torch.Tensor:
\"\"\"
This is only defined as the \`forward\` so that accelerate hooks can move correctly \`correct_output_scale\`
(which is a nn.Parameter, not a Module) between devices when offloading. It is otherwise only used in
\`scale_corrected_output\`
\"\"\"
return (corrected.type_as(self.correct_output_scale) * self.correct_output_scale).type_as(corrected)
def scale_corrected_output(self, corrected: torch.Tensor) -> torch.Tensor:
\"\"\"Scales the provided 3D tensor of shape [batch_size, num_tokens, hidden_size].\"\"\"
return self.forward(corrected)
class Gemma3nTextRotaryEmbedding(nn.Module):
def __init__(self, config: Gemma3nTextConfig, device=None):
super().__init__()
# BC: \"rope_type\" was originally \"type\"
if hasattr(config, \"rope_scaling\") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get(\"rope_type\", config.rope_scaling.get(\"type\"))
else:
self.rope_type = \"default\"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer(\"inv_freq\", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != \"mps\" else \"cpu\"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
\"\"\"Rotates half the hidden dims of the input.\"\"\"
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
\"\"\"
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
\"\"\"
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
dropout: float = 0.0,
scaling: Optional[float] = None,
softcap: Optional[float] = None,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
if scaling is None:
scaling = module.head_dim**-0.5
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if softcap is not None:
attn_weights = attn_weights / softcap
attn_weights = torch.tanh(attn_weights)
attn_weights = attn_weights * softcap
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
def apply_rotary_pos_emb(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
unsqueeze_dim: int = 1,
):
\"\"\"Applies Rotary Position Embedding to the query and key tensors.
Args:
x (\`torch.Tensor\`): The tensor to embed.
cos (\`torch.Tensor\`): The cosine part of the rotary embedding.
sin (\`torch.Tensor\`): The sine part of the rotary embedding.
position_ids (\`torch.Tensor\`, *optional*):
Deprecated and unused.
unsqueeze_dim (\`int\`, *optional*, defaults to 1):
The \'unsqueeze_dim\' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
\`tuple(torch.Tensor)\` comprising of the query and key tensors rotated using the Rotary Position Embedding.
\"\"\"
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
return (x * cos) + (rotate_half(x) * sin)
class Gemma3nTextAttention(nn.Module):
\"\"\"Multi-headed attention from \'Attention Is All You Need\' paper\"\"\"
def __init__(self, config: Gemma3nTextConfig, layer_idx: int):
super().__init__()
self.is_sliding = config.layer_types[layer_idx] == \"sliding_attention\"
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, \"head_dim\", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.attention_dropout = self.config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.sliding_window = config.sliding_window if self.is_sliding else None
self.q_norm = Gemma3nRMSNorm(dim=config.head_dim, eps=config.rms_norm_eps)
self.k_norm = Gemma3nRMSNorm(dim=config.head_dim, eps=config.rms_norm_eps)
self.v_norm = Gemma3nRMSNorm(dim=config.head_dim, eps=config.rms_norm_eps, with_scale=False)
first_kv_shared_layer_idx = self.config.num_hidden_layers - self.config.num_kv_shared_layers
self.is_kv_shared_layer = layer_idx >= first_kv_shared_layer_idx > 0
# Find the index of the last sliding or full layer before sharing starts (or None if no sharing)
layer_type = config.layer_types[layer_idx]
self.kv_shared_layer_index = (
first_kv_shared_layer_idx - 1 - config.layer_types[first_kv_shared_layer_idx - 1 :: -1].index(layer_type)
if self.is_kv_shared_layer
else None
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: torch.Tensor,
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.config.head_dim)
cos, sin = position_embeddings
query_states = self.q_proj(hidden_states).view(hidden_shape)
query_states = self.q_norm(query_states)
query_states = apply_rotary_pos_emb(query_states, cos, sin, unsqueeze_dim=2)
query_states = query_states.transpose(1, 2)
if self.is_kv_shared_layer and self.kv_shared_layer_index is not None and past_key_value is not None:
# Device of past layer may be different from current one
indices = cache_position.to(past_key_value.key_cache[self.kv_shared_layer_index].device)
# In this case we need special handling of the slice as the layer is of fixed small size (for full layers, we never go beyond)
if isinstance(past_key_value, HybridCache) and self.is_sliding:
max_length = past_key_value.sliding_window
indices = (
slice(0, max_length)
if cache_position.shape[0] > max_length
else cache_position.clamp(min=0, max=max_length - 1)
)
# Device of past layer may be different from current one
key_states = past_key_value.key_cache[self.kv_shared_layer_index][:, :, indices].to(query_states.device)
value_states = past_key_value.value_cache[self.kv_shared_layer_index][:, :, indices].to(
query_states.device
)
else:
key_states = self.k_proj(hidden_states).view(hidden_shape)
key_states = self.k_norm(key_states)
key_states = apply_rotary_pos_emb(key_states, cos, sin, unsqueeze_dim=2)
key_states = key_states.transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape)
value_states = self.v_norm(value_states)
value_states = value_states.transpose(1, 2)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {
\"sin\": sin,
\"cos\": cos,
\"cache_position\": cache_position,
\"sliding_window\": self.sliding_window,
}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != \"eager\":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=1.0,
sliding_window=self.sliding_window,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Gemma3nTextDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: Gemma3nTextConfig, layer_idx: int):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.layer_idx = layer_idx
self.attention_type = config.layer_types[layer_idx]
self.self_attn = Gemma3nTextAttention(config, layer_idx)
self.mlp = Gemma3nTextMLP(config, layer_idx=layer_idx)
self.input_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.pre_feedforward_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
self.act_fn = ACT2FN[config.hidden_activation]
self.altup = Gemma3nTextAltUp(config)
self.laurel = Gemma3nTextLaurelBlock(config)
self.per_layer_input_gate = nn.Linear(self.hidden_size, self.hidden_size_per_layer_input, bias=False)
self.per_layer_projection = nn.Linear(self.hidden_size_per_layer_input, self.hidden_size, bias=False)
self.post_per_layer_input_norm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
@deprecate_kwarg(\"last_cache_position\", version=\"4.53.0\")
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings_global: torch.Tensor,
position_embeddings_local: torch.Tensor,
per_layer_input: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
predictions = self.altup.predict(hidden_states)
active_prediction = predictions[self.config.altup_active_idx]
active_prediction_normed = self.input_layernorm(active_prediction)
laurel_output = self.laurel(active_prediction_normed)
# apply global RoPE to non-sliding layer only
if self.self_attn.is_sliding:
position_embeddings = position_embeddings_local
else:
position_embeddings = position_embeddings_global
attn, self_attn_weights = self.self_attn(
hidden_states=active_prediction_normed,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
attn = self.post_attention_layernorm(attn)
attn_gated = active_prediction + attn
attn_laurel = (attn_gated + laurel_output) / math.sqrt(2)
attn_norm = self.pre_feedforward_layernorm(attn_laurel)
attn_ffw = self.mlp(attn_norm)
attn_ffw_norm = self.post_feedforward_layernorm(attn_ffw)
attn_ffw_laurel_gated = attn_laurel + attn_ffw_norm
corrected_predictions = self.altup.correct(predictions, attn_ffw_laurel_gated)
first_prediction = corrected_predictions[self.config.altup_active_idx].clone()
if self.config.altup_correct_scale:
first_prediction = self.altup.scale_corrected_output(first_prediction)
# per_layer_input_gate adapted from jax.numpy.einsum(\"btd,dp->btp\", ...)
first_prediction = self.per_layer_input_gate(first_prediction)
first_prediction = self.act_fn(first_prediction)
first_prediction = torch.multiply(first_prediction, per_layer_input)
# per_layer_projection adapted from jax.numpy.einsum(\"btp,pd->btd\", ...)
first_prediction = self.per_layer_projection(first_prediction)
first_prediction = self.post_per_layer_input_norm(first_prediction)
corrected_predictions[1:] += first_prediction
outputs = (corrected_predictions,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
@auto_docstring
class Gemma3nPreTrainedModel(PreTrainedModel):
config_class = Gemma3nConfig
base_model_prefix = \"\"
supports_gradient_checkpointing = True
_no_split_modules = [\"Gemma3nTextDecoderLayer\"]
_skip_keys_device_placement = [\"past_key_values\"]
_supports_flash_attn_3 = True
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
# important: this ported version of Gemma2 isn\'t meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed
std = getattr(self.config, \"initializer_range\", self.config.get_text_config().initializer_range)
if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, Gemma3nRMSNorm):
if module.with_scale:
module.weight.data.fill_(1.0)
elif isinstance(module, Gemma3nAudioCumulativeGroupNorm):
module.weight.data.fill_(1.0)
elif isinstance(module, Gemma3nAudioAttention):
module.per_dim_scale.data.zero_()
elif isinstance(module, Gemma3nTextAltUp):
module.correct_output_scale.data.zero_()
@auto_docstring(custom_intro=\"The base Gemma 3n language model without a language modeling head.\")
class Gemma3nTextModel(Gemma3nPreTrainedModel):
config_class = Gemma3nTextConfig
def __init__(self, config: Gemma3nTextConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
# Gemma3n downcasts the below to bfloat16, causing sqrt(3072)=55.4256 to become 55.5. See https://github.com/huggingface/transformers/pull/29402
self.embed_tokens = Gemma3nTextScaledWordEmbedding(
config.vocab_size, config.hidden_size, self.padding_idx, embed_scale=self.config.hidden_size**0.5
)
self.layers = nn.ModuleList(
[Gemma3nTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Gemma3nRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Gemma3nTextRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# TODO (raushan): Fix this after RoPE refactor. For now we hack it by
# reassigning thetas when we want to create a local RoPE layer. Config
# defaults should hold values for global RoPE.
config = copy.deepcopy(config)
config.rope_theta = config.rope_local_base_freq
config.rope_scaling = {\"rope_type\": \"default\"}
self.rotary_emb_local = Gemma3nTextRotaryEmbedding(config=config)
self.hidden_size = config.hidden_size
self.hidden_size_per_layer_input = config.hidden_size_per_layer_input
self.embed_tokens_per_layer = Gemma3nTextScaledWordEmbedding(
config.vocab_size_per_layer_input,
config.num_hidden_layers * config.hidden_size_per_layer_input,
self.padding_idx,
embed_scale=config.hidden_size_per_layer_input**0.5,
)
self.per_layer_model_projection = nn.Linear(
self.hidden_size,
config.num_hidden_layers * config.hidden_size_per_layer_input,
bias=False,
)
self.per_layer_projection_norm = Gemma3nRMSNorm(config.hidden_size_per_layer_input, eps=config.rms_norm_eps)
self.altup_projections = nn.ModuleList(
[nn.Linear(self.hidden_size, self.hidden_size, bias=False) for _ in range(1, self.config.altup_num_inputs)]
)
self.altup_unembed_projections = nn.ModuleList(
[nn.Linear(self.hidden_size, self.hidden_size, bias=False) for _ in range(1, self.config.altup_num_inputs)]
)
self.register_buffer(\"per_layer_projection_scale\", torch.tensor(self.hidden_size**-0.5), persistent=False)
self.register_buffer(\"per_layer_input_scale\", torch.rsqrt(torch.tensor(2.0)), persistent=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
per_layer_inputs: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
r\"\"\"
per_layer_inputs (torch.Tensor, *optional*, defaults to None):
Pre-computed per-layer embeddings. If None, they are derived from input_ids if provided.
\"\"\"
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(\"You must specify exactly one of input_ids or inputs_embeds\")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
\"\`use_cache=True\` is incompatible with gradient checkpointing. Setting \`use_cache=False\`.\"
)
use_cache = False
if input_ids is not None:
inputs_embeds = self.embed_tokens(input_ids)
per_layer_inputs = self.get_per_layer_inputs(input_ids)
per_layer_inputs = self.project_per_layer_inputs(inputs_embeds, per_layer_inputs)
if use_cache and past_key_values is None and not self.training:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# It may already have been prepared by e.g. \`generate\`
if not isinstance(causal_mask_mapping := attention_mask, dict):
# Prepare mask arguments
mask_kwargs = {
\"config\": self.config,
\"input_embeds\": inputs_embeds,
\"attention_mask\": attention_mask,
\"cache_position\": cache_position,
\"past_key_values\": past_key_values,
}
# Create the masks
causal_mask_mapping = {
\"full_attention\": create_causal_mask(**mask_kwargs),
\"sliding_attention\": create_sliding_window_causal_mask(**mask_kwargs),
}
# embed positions
hidden_states_0 = inputs_embeds
# Initialize RoPE embeddings
position_embeddings_global = self.rotary_emb(hidden_states_0, position_ids)
position_embeddings_local = self.rotary_emb_local(hidden_states_0, position_ids)
# Expand hidden_states to support per-layer inputs
target_magnitude = torch.mean(hidden_states_0**2, dim=-1, keepdim=True) ** 0.5
epsilon_tensor = torch.tensor(1e-5)
temp_hidden_states = [hidden_states_0]
for i in range(1, self.config.altup_num_inputs):
# altup_proj adapted from jax.numpy.einsum(\"btp,pd->btd\", ...)
altup_proj = self.altup_projections[i - 1](hidden_states_0)
current_hidden_state = altup_proj.to(dtype=hidden_states_0.dtype, device=target_magnitude.device)
new_magnitude = torch.mean(current_hidden_state**2, dim=-1, keepdim=True)
new_magnitude = torch.sqrt(torch.maximum(new_magnitude, epsilon_tensor.to(target_magnitude.device)))
current_hidden_state = current_hidden_state * target_magnitude / new_magnitude
temp_hidden_states.append(current_hidden_state)
hidden_states = torch.stack(temp_hidden_states, dim=0) # [num_altup_inputs, batch, seq_len, hidden_size]
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
causal_mask = causal_mask_mapping[decoder_layer.attention_type]
per_layer_input = per_layer_inputs[:, :, decoder_layer.layer_idx, :]
layer_outputs = decoder_layer(
hidden_states,
position_embeddings_global,
position_embeddings_local,
per_layer_input,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
# add hidden states from the last decoder layer (but before reprojecting to stay consistent with layer output)
if output_hidden_states:
all_hidden_states += (hidden_states,)
# Per-layer inputs to single output
target_magnitude = torch.mean(hidden_states[0] ** 2, dim=-1, keepdim=True) ** 0.5
temp_hidden_states = [hidden_states[0]]
for i in range(1, self.config.altup_num_inputs):
# altup_unembed_projections adapted from jax.numpy.einsum(\"btp,pd->btd\", ...)
altup_unemb_proj: torch.Tensor = self.altup_unembed_projections[i - 1](hidden_states[i])
current_hidden_state = altup_unemb_proj.to(dtype=hidden_states_0.dtype, device=target_magnitude.device)
new_magnitude = torch.mean(current_hidden_state**2, dim=-1, keepdim=True)
new_magnitude = torch.sqrt(torch.maximum(new_magnitude, epsilon_tensor.to(target_magnitude.device)))
current_hidden_state = current_hidden_state * target_magnitude / new_magnitude
temp_hidden_states.append(current_hidden_state)
hidden_states = torch.stack(temp_hidden_states)
hidden_states = torch.mean(hidden_states, dim=0)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def get_per_layer_inputs(self, input_ids: torch.LongTensor) -> torch.Tensor:
return self.embed_tokens_per_layer(input_ids).reshape(
*input_ids.shape,
self.config.num_hidden_layers,
self.hidden_size_per_layer_input,
)
def project_per_layer_inputs(
self,
inputs_embeds: torch.Tensor,
per_layer_inputs: Optional[torch.Tensor] = None,
) -> torch.Tensor:
per_layer_projection: torch.Tensor = self.per_layer_model_projection(inputs_embeds)
per_layer_projection *= self.per_layer_projection_scale.to(
dtype=inputs_embeds.dtype, device=per_layer_projection.device
)
per_layer_projection = per_layer_projection.reshape(
*inputs_embeds.shape[:-1],
self.config.num_hidden_layers,
self.hidden_size_per_layer_input,
)
per_layer_projection = self.per_layer_projection_norm(per_layer_projection)
if per_layer_inputs is None:
return per_layer_projection
if per_layer_projection.shape != per_layer_inputs.shape:
# per-layer inputs are sometimes padded with zeros, slice the relevant embeddings.
per_layer_inputs = per_layer_inputs[..., : self.config.num_hidden_layers, :]
return (per_layer_projection + per_layer_inputs) * self.per_layer_input_scale.to(
dtype=inputs_embeds.dtype, device=per_layer_projection.device
)
@auto_docstring(custom_intro=\"The base Gemma 3n language model with a language modeling head.\")
class Gemma3nForCausalLM(Gemma3nPreTrainedModel, GenerationMixin):
_tied_weights_keys = [\"lm_head.weight\"]
_tp_plan = {\"lm_head\": \"colwise_rep\"}
_pp_plan = {\"lm_head\": ([\"hidden_states\"], [\"logits\"])}
config_class = Gemma3nTextConfig
base_model_prefix = \"model\"
_checkpoint_conversion_mapping = {\"model.language_model\": \"model\"}
def __init__(self, config: Gemma3nTextConfig):
super().__init__(config)
self.model = Gemma3nTextModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> CausalLMOutputWithPast:
r\"\"\"
labels (\`torch.LongTensor\` of shape \`(batch_size, sequence_length)\`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in \`[0, ...,
config.vocab_size]\` or -100 (see \`input_ids\` docstring). Tokens with indices set to \`-100\` are ignored
(masked), the loss is only computed for the tokens with labels in \`[0, ..., config.vocab_size]\`.
Example:
\`\`\`python
>>> from transformers import AutoTokenizer, Gemma3nForCausalLM
>>> model = Gemma3nForCausalLM.from_pretrained(\"google/gemma-2-9b\")
>>> tokenizer = AutoTokenizer.from_pretrained(\"google/gemma-2-9b\")
>>> prompt = \"What is your favorite condiment?\"
>>> inputs = tokenizer(prompt, return_tensors=\"pt\")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
\"What is your favorite condiment?\"
\`\`\`\"\"\"
if self.training and self.config._attn_implementation != \"eager\":
logger.warning_once(
\"It is strongly recommended to train Gemma3n models with the \`eager\` attention implementation \"
f\"instead of \`{self.config._attn_implementation}\`. Use \`eager\` with \`AutoModelForCausalLM.from_pretrained(\'<path-to-checkpoint>\', attn_implementation=\'eager\')\`.\"
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**loss_kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
if self.config.final_logit_softcapping is not None:
logits = logits / self.config.final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * self.config.final_logit_softcapping
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class Gemma3nMultimodalEmbedder(nn.Module):
\"\"\"Embeds token ids or soft tokens for multimodal content into language model space.\"\"\"
def __init__(
self,
multimodal_config: Union[Gemma3nAudioConfig, Gemma3nVisionConfig],
text_config: Gemma3nTextConfig,
):
super().__init__()
self.multimodal_hidden_size = multimodal_config.hidden_size
self.eps = multimodal_config.rms_norm_eps
self.vocab_offset = multimodal_config.vocab_offset
self.vocab_size = multimodal_config.vocab_size
self.text_hidden_size = text_config.hidden_size
self.embedding = nn.Embedding(self.vocab_size, self.multimodal_hidden_size)
self.hard_embedding_norm = Gemma3nRMSNorm(self.multimodal_hidden_size, eps=self.eps)
self.soft_embedding_norm = Gemma3nRMSNorm(self.multimodal_hidden_size, eps=self.eps)
self.embedding_projection = nn.Linear(self.multimodal_hidden_size, self.text_hidden_size, bias=False)
self.embedding_post_projection_norm = Gemma3nRMSNorm(self.text_hidden_size, eps=self.eps, with_scale=False)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
\"\"\"Embeds token ids or soft tokens for multimodal content into language model space.
Args:
input_ids: A torch.LongTensor containing the token ids to embed. Values should be in the range
\`[vocab_offset, vocab_offset + vocab_size)\`.
inputs_embeds: A torch.Tensor containing the soft tokens to embed.
Returns:
A torch.Tensor of embeddings with shape \`[batch_size, seq_len, self.config.text_config.hidden_size]\`.
\"\"\"
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(\"You must specify exactly one of input_ids or inputs_embeds\")
if inputs_embeds is not None:
emb_norm = self.soft_embedding_norm(inputs_embeds)
else:
hard_emb = self.embedding(input_ids - self.vocab_offset)
emb_norm = self.hard_embedding_norm(hard_emb)
emb_norm_proj = self.embedding_projection(emb_norm)
return self.embedding_post_projection_norm(emb_norm_proj)
@auto_docstring(
custom_intro=\"\"\"
The base Gemma 3n model comprising a vision backbone, an audio backbone, and a language model without a
language modeling head.
\"\"\"
)
class Gemma3nModel(Gemma3nPreTrainedModel):
_checkpoint_conversion_mapping = {}
# we are filtering the logits/labels so we shouldn\'t divide the loss based on num_items_in_batch
accepts_loss_kwargs = False
def __init__(self, config: Gemma3nConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config=config.vision_config)
self.vocab_size = config.text_config.vocab_size
language_model = AutoModel.from_config(config=config.text_config)
self.language_model = language_model
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self.vocab_size_per_layer_input = config.text_config.vocab_size_per_layer_input
self.audio_tower = AutoModel.from_config(config.audio_config)
self.embed_vision = Gemma3nMultimodalEmbedder(config.vision_config, config.text_config)
self.embed_audio = Gemma3nMultimodalEmbedder(config.audio_config, config.text_config)
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def set_decoder(self, decoder):
self.language_model = decoder
def get_decoder(self):
return self.language_model
def get_image_features(self, pixel_values: torch.Tensor) -> torch.Tensor:
\"\"\"
Projects the last hidden state from the vision model into language model space.
Args:
pixel_values (\`torch.FloatTensor]\` of shape \`(batch_size, channels, height, width)\`)
The tensors corresponding to the input images.
Returns:
image_features (\`torch.Tensor\`): Image feature tensor of shape \`(num_images, image_length, embed_dim)\`).
\"\"\"
vision_outputs = self.vision_tower(
pixel_values=pixel_values, do_pooling=False, return_dict=True
).last_hidden_state
# Convert from (batch, channels, height, width) to (batch, height * width, channels) where:
# height == width and height * width == Gemma3nConfig.vision_soft_tokens_per_image.
vision_outputs = vision_outputs.reshape(
vision_outputs.shape[0],
self.config.vision_config.hidden_size,
self.config.vision_soft_tokens_per_image,
).permute(0, 2, 1)
# Normalize and embed the soft tokens into language model space.
vision_outputs *= self.config.vision_config.hidden_size**0.5
return self.embed_vision(inputs_embeds=vision_outputs)
@can_return_tuple
def forward(
self,
input_ids: Optional[torch.LongTensor] = None, # text inputs
pixel_values: Optional[torch.FloatTensor] = None, # vision inputs
input_features: Optional[torch.FloatTensor] = None, # audio inputs
attention_mask: Optional[torch.Tensor] = None,
input_features_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
**lm_kwargs,
) -> Gemma3nCausalLMOutputWithPast:
r\"\"\"
labels (\`torch.LongTensor\` of shape \`(batch_size, sequence_length)\`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in \`[0, ...,
config.text_config.vocab_size]\` or -100 (see \`input_ids\` docstring). Tokens with indices set to \`-100\` are ignored
(masked), the loss is only computed for the tokens with labels in \`[0, ..., config.text_config.vocab_size]\`.
Example:
\`\`\`python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Gemma3nForConditionalGeneration
>>> model = Gemma3nForConditionalGeneration.from_pretrained(\"google/gemma3n2-3b-mix-224\")
>>> processor = AutoProcessor.from_pretrained(\"google/gemma3n2-3b-mix-224\")
>>> prompt = \"Where is the cat standing?\"
>>> url = \"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg\"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, text=prompt, return_tensors=\"pt\")
>>> # Generate
>>> generate_ids = model.generate(**inputs,)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
\"Where is the cat standing?\nsnow\"
\`\`\`
\"\"\"
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(\"You must specify exactly one of input_ids or inputs_embeds\")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if input_ids is not None:
inputs_embeds = self.get_input_embeddings()(input_ids)
# Prepare per-layer inputs from inputs_ids
per_layer_inputs_mask = torch.logical_and(input_ids >= 0, input_ids < self.vocab_size_per_layer_input)
per_layer_inputs_tokens = torch.where(per_layer_inputs_mask, input_ids, torch.zeros_like(input_ids))
per_layer_inputs = self.language_model.get_per_layer_inputs(per_layer_inputs_tokens)
# Handle vision tokens (>= embed_vision.vocab_offset and < embed_audio.vocab_offset)
vision_mask = torch.logical_and(
input_ids >= self.embed_vision.vocab_offset, input_ids < self.embed_audio.vocab_offset
)
dummy_vision_token_id = self.embed_vision.vocab_offset + self.embed_vision.vocab_size - 1
vision_input_ids = torch.where(vision_mask, input_ids, dummy_vision_token_id).to(inputs_embeds.device)
vision_embeds = self.embed_vision(input_ids=vision_input_ids)
expanded_vision_mask = vision_mask.unsqueeze(-1).expand_as(inputs_embeds)
inputs_embeds = torch.where(expanded_vision_mask, vision_embeds, inputs_embeds)
# Handle audio tokens (>= embed_audio.vocab_offset)
audio_mask = input_ids >= self.embed_audio.vocab_offset
dummy_audio_token_id = self.embed_audio.vocab_offset + self.embed_audio.vocab_size - 1
audio_input_ids = torch.where(audio_mask, input_ids, dummy_audio_token_id).to(inputs_embeds.device)
audio_embeds = self.embed_audio(input_ids=audio_input_ids)
expanded_audio_mask = audio_mask.unsqueeze(-1).expand_as(inputs_embeds)
inputs_embeds = torch.where(expanded_audio_mask, audio_embeds, inputs_embeds)
else:
per_layer_inputs = None
# Merge text and images
if pixel_values is not None:
image_features = self.get_image_features(pixel_values)
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
)
else:
special_image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0]
raise ValueError(
f\"Number of images does not match number of special image tokens in the input text. \"
f\"Got {image_tokens_in_text} image tokens in the text and \"
f\"{image_features.shape[0] * image_features.shape[1]} tokens from image embeddings.\"
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
# Merge text and audio
if input_features is not None and input_features_mask is not None:
audio_features, audio_mask = self.get_audio_features(input_features, ~input_features_mask)
# The Gemma3nProcessor expects all audio will be 30s in length and inserts 188 audio soft tokens into the
# text to account for this. However, the audio preprocessing and encoder do not gurarantee they will
# produce 188 soft tokens; they will produce at most that many tokens, but they may produce fewer tokens
# depending on the length of the longest audio input in the batch. When we encounter this situation, we pad
# the audio feature out to 188 soft tokens with the emebedding of the last token in the embed_audio vocab.
audio_padding_toks = torch.tensor([[self.vocab_size - 1]], dtype=torch.long, device=audio_features.device)
audio_padding_embs = self.embed_audio(input_ids=audio_padding_toks)
audio_features = torch.where(audio_mask.unsqueeze(-1), audio_padding_embs, audio_features)
audio_batch_size, audio_seq_len, audio_embed_dim = audio_features.shape
extra_padding_tokens = self.config.audio_soft_tokens_per_image - audio_seq_len
extra_padding_features = audio_padding_embs.expand(audio_batch_size, extra_padding_tokens, audio_embed_dim)
audio_features = torch.cat((audio_features, extra_padding_features), dim=1)
if input_ids is None:
special_audio_mask = inputs_embeds == self.embed_audio(
input_ids=torch.tensor(self.config.audio_token_id, dtype=torch.long, device=inputs_embeds.device)
)
else:
special_audio_mask = (input_ids == self.config.audio_token_id).unsqueeze(-1)
special_audio_mask = special_audio_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_audio_mask].numel() != audio_features.numel():
audio_tokens_in_text = (special_audio_mask).sum(dim=1).sum(dim=0)[0]
raise ValueError(
f\"Number of audio input features does not match number of special audio tokens in the input text. \"
f\"Got {audio_tokens_in_text} audio tokens in the text and \"
f\"{audio_features.shape[0] * audio_features.shape[1]} tokens from audio embeddings.\"
)
audio_features = audio_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_audio_mask, audio_features)
outputs = self.language_model(
input_ids=None,
per_layer_inputs=per_layer_inputs,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
cache_position=cache_position,
**lm_kwargs,
)
return Gemma3nModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values if use_cache else None,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
audio_hidden_states=audio_features if input_features is not None else None,
)
def get_audio_features(
self, input_features: torch.Tensor, input_features_mask: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
\"\"\"
Projects the last hidden state from the audio encoder into language model space.
Args:
input_features (\`torch.FloatTensor]\` of shape \`(num_images, seq_length, num_features)\`):
The tensors corresponding to the input audio.
input_features (\`torch.FloatTensor]\` of shape \`(num_images, seq_length)\`):
The attention mask for the input audio.
Returns:
audio_features (\`torch.Tensor\`): Audio feature tensor of shape \`(num_images, audio_length, embed_dim)\`).
\"\"\"
audio_outputs, audio_mask = self.audio_tower(input_features, input_features_mask)
return self.embed_audio(inputs_embeds=audio_outputs), audio_mask
@auto_docstring(
custom_intro=\"\"\"
The base Gemma 3n model comprising a vision backbone, an audio backbone, a language model, and a language modeling
head.
\"\"\"
)
class Gemma3nForConditionalGeneration(Gemma3nPreTrainedModel, GenerationMixin):
_checkpoint_conversion_mapping = {}
_tied_weights_keys = [\"lm_head.weight\"]
base_model_prefix = \"model\"
def __init__(self, config: Gemma3nConfig):
super().__init__(config)
self.model = Gemma3nModel(config)
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.set_decoder(decoder)
def get_decoder(self):
return self.model.get_decoder()
def get_image_features(self, pixel_values):
return self.model.get_image_features(pixel_values)
# Make modules available throught conditional class for BC
@property
def language_model(self):
return self.model.language_model
@property
def vision_tower(self):
return self.model.vision_tower
@property
def multi_modal_projector(self):
raise AttributeError(\"Use embed_vision instead of multi_modal_projector.\")
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None, # text inputs
pixel_values: Optional[torch.FloatTensor] = None, # vision inputs
input_features: Optional[torch.FloatTensor] = None, # audio inputs
attention_mask: Optional[torch.Tensor] = None,
input_features_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**lm_kwargs,
) -> Gemma3nCausalLMOutputWithPast:
r\"\"\"
input_features (torch.Tensor, *optional*, defaults to None):
The audio inputs to be encoded.
input_features_mask (torch.Tensor, *optional*, defaults to None):
The attention mask for the input audio.
labels (\`torch.LongTensor\` of shape \`(batch_size, sequence_length)\`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in \`[0, ...,
config.text_config.vocab_size]\` or -100 (see \`input_ids\` docstring). Tokens with indices set to \`-100\` are
ignored (masked), the loss is only computed for the tokens with labels in
\`[0, ..., config.text_config.vocab_size]\`.
Example:
\`\`\`python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration
>>> model = Gemma3ForConditionalGeneration.from_pretrained(\"google/gemma-3-4b-it\")
>>> processor = AutoProcessor.from_pretrained(\"google/gemma-3-4b-it\")
>>> messages = [
... {
... \"role\": \"system\",
... \"content\": [
... {\"type\": \"text\", \"text\": \"You are a helpful assistant.\"}
... ]
... },
... {
... \"role\": \"user\", \"content\": [
... {\"type\": \"image\", \"url\": \"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg\"},
... {\"type\": \"text\", \"text\": \"Where is the cat standing?\"},
... ]
... },
... ]
>>> inputs = processor.apply_chat_template(
... messages,
... tokenizer=True,
... return_dict=True,
... return_tensors=\"pt\",
... add_generation_prompt=True
... )
>>> # Generate
>>> generate_ids = model.generate(**inputs)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
\"user\nYou are a helpful assistant.\n\n\n\n\n\nWhere is the cat standing?\nmodel\nBased on the image, the cat is standing in a snowy area, likely outdoors. It appears to\"
\`\`\`
\"\"\"
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.model(
input_ids=input_ids,
pixel_values=pixel_values,
input_features=input_features,
attention_mask=attention_mask,
input_features_mask=input_features_mask,
position_ids=position_ids,
past_key_values=past_key_values,
token_type_ids=token_type_ids,
cache_position=cache_position,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
**lm_kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
if (final_logit_softcapping := self.config.get_text_config().final_logit_softcapping) is not None:
logits = logits / final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * final_logit_softcapping
loss = None
if labels is not None:
# Upcast to float if we need to compute the loss to avoid potential precision issues
logits = logits.float()
shift_logits = logits[..., :-1, :]
shift_labels = labels[..., 1:]
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device)
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous()
else:
shift_logits = shift_logits.contiguous()
shift_labels = shift_labels.contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size)
flat_labels = shift_labels.view(-1).to(shift_logits.device)
loss = loss_fct(flat_logits, flat_labels)
return Gemma3nCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=outputs.image_hidden_states,
audio_hidden_states=outputs.audio_hidden_states,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
pixel_values=None,
input_features=None,
attention_mask=None,
input_features_mask=None,
token_type_ids=None,
use_cache=True,
logits_to_keep=None,
labels=None,
**kwargs,
):
# Overwritten -- custom \`position_ids\` and \`pixel_values\` handling
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
cache_position=cache_position,
use_cache=use_cache,
logits_to_keep=logits_to_keep,
token_type_ids=token_type_ids,
**kwargs,
)
# If we\'re in cached decoding stage, multimodal inputs should be None because input ids do not contain special
# tokens anymore. Otherwise multimodal inputs should be passed to model.
# NOTE: use_cache=False always needs pixel_values, input_features, and input_features_mask
if cache_position[0] == 0:
model_inputs[\"pixel_values\"] = pixel_values
model_inputs[\"input_features\"] = input_features
model_inputs[\"input_features_mask\"] = input_features_mask
return model_inputs
@property
def audio_tower(self):
return self.model.audio_tower
__all__ = [
\"Gemma3nAudioEncoder\",
\"Gemma3nForCausalLM\",
\"Gemma3nForConditionalGeneration\",
\"Gemma3nModel\",
\"Gemma3nPreTrainedModel\",
\"Gemma3nTextModel\",
]
|