Spaces:
Running
Running
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨ | |
# This file was automatically generated from src/transformers/models/gemma3n/modular_gemma3n.py. | |
# Do NOT edit this file manually as any edits will be overwritten by the generation of | |
# the file from the modular. If any change should be done, please apply the change to the | |
# modular_gemma3n.py file directly. One of our CI enforces this. | |
# π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨π¨ | |
# coding=utf-8 | |
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved. | |
# | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import math | |
from collections.abc import Callable, Sequence | |
from dataclasses import dataclass | |
from typing import Optional, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ...activations import ACT2FN | |
from ...cache_utils import Cache, DynamicCache, HybridCache | |
from ...generation import GenerationMixin | |
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask | |
from ...modeling_flash_attention_utils import FlashAttentionKwargs | |
from ...modeling_layers import GradientCheckpointingLayer | |
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast | |
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update | |
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel | |
from ...processing_utils import Unpack | |
from ...utils import ( | |
ModelOutput, | |
auto_docstring, | |
can_return_tuple, | |
is_torchdynamo_compiling, | |
logging, | |
) | |
from ...utils.deprecation import deprecate_kwarg | |
from ..auto import AutoModel | |
from .configuration_gemma3n import Gemma3nAudioConfig, Gemma3nConfig, Gemma3nTextConfig, Gemma3nVisionConfig | |
logger = logging.get_logger(__name__) | |
class Gemma3nModelOutputWithPast(BaseModelOutputWithPast): | |
r""" | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) | |
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | |
`past_key_values` input) to speed up sequential decoding. | |
image_hidden_states (`torch.FloatTensor`, *optional*): | |
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. | |
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. | |
audio_hidden_states (`torch.FloatTensor`, *optional*): | |
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. | |
audio_hidden_states of the model produced by the audio encoder and after projecting the last hidden state. | |
""" | |
image_hidden_states: Optional[torch.FloatTensor] = None | |
audio_hidden_states: Optional[torch.FloatTensor] = None | |
class Gemma3nCausalLMOutputWithPast(ModelOutput): | |
r""" | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.text_config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) | |
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | |
`past_key_values` input) to speed up sequential decoding. | |
image_hidden_states (`torch.FloatTensor`, *optional*): | |
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. | |
image_hidden_states of the model produced by the vision encoder after projecting last hidden state. | |
audio_hidden_states (`torch.FloatTensor`, *optional*): | |
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. | |
audio_hidden_states of the model produced by the audio encoder and after projecting the last hidden state. | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: Optional[torch.FloatTensor] = None | |
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None | |
hidden_states: Optional[tuple[torch.FloatTensor]] = None | |
attentions: Optional[tuple[torch.FloatTensor]] = None | |
image_hidden_states: Optional[torch.FloatTensor] = None | |
audio_hidden_states: Optional[torch.FloatTensor] = None | |
class Gemma3nRMSNorm(nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-6, with_scale: bool = True): | |
super().__init__() | |
self.eps = eps | |
self.with_scale = with_scale | |
if self.with_scale: | |
self.weight = nn.Parameter(torch.ones(dim)) | |
else: | |
self.register_buffer("weight", torch.tensor(1.0), persistent=False) | |
def _norm(self, x): | |
return x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16) | |
# See https://github.com/huggingface/transformers/pull/29402 | |
output = self._norm(x.float()) * self.weight.float() | |
return output.type_as(x) | |
def extra_repr(self): | |
return f"{tuple(self.weight.shape)}, eps={self.eps}" | |
# ==== Audio Encoder ==== | |
class Gemma3nAudioRelativePositionEmbedding(nn.Module): | |
def __init__(self, config: Gemma3nAudioConfig): | |
super().__init__() | |
self.config = config | |
self.num_heads = self.config.conf_num_attention_heads | |
self.channels = self.config.hidden_size | |
self.head_dim = self.channels // self.num_heads | |
self.max_backward = max(0, self.config.conf_attention_context_left - 1) | |
self.max_forward = self.config.conf_attention_context_right | |
self.pos_proj = nn.Linear(self.channels, self.num_heads * self.head_dim, bias=False) | |
min_timescale = 1.0 | |
max_timescale = 1.0e4 | |
num_timescales = self.channels // 2 | |
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / max(num_timescales - 1, 1) | |
inv_timescales = min_timescale * torch.exp(torch.arange(num_timescales) * -log_timescale_increment) | |
self.register_buffer( | |
"inv_timescales", | |
inv_timescales.float().unsqueeze(0).unsqueeze(0), | |
persistent=False, | |
) | |
def _get_timing_signal_1d_pos(self, position: torch.Tensor, dtype: torch.dtype) -> torch.Tensor: | |
position = position.float().unsqueeze(-1) | |
scaled_time = position * self.inv_timescales.to(device=position.device, dtype=torch.float32) | |
timing_signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=-1) | |
return timing_signal.type(dtype) | |
def _relative_shift( | |
self, | |
term_bd_before_shift: torch.Tensor, | |
batch_size: int, | |
num_heads: int, | |
num_query_blocks: int, | |
query_block_size: int, | |
key_context_size: int, | |
max_span_plus_1: int, | |
) -> torch.Tensor: | |
"""Performs the relative shift. | |
Args: | |
term_bd_before_shift: Tensor of shape [B, N, U, W, F_span]. batch_size | |
(B), num_heads (N), num_query_blocks (U), query_block_size (W), | |
key_context_size (C = W+L+R), max_span_plus_1 (F_span = L+R+1). | |
Returns: | |
Tensor of shape [B, N, U, W, C]. | |
""" | |
# term_bd_before_shift shape: [B, N, U, W, F_span] | |
# Target shape after shift: [B, N, U, W, C] | |
# Padding amount for the last dimension (F_span) to become (C + 1) | |
# C = key_context_size | |
# F_span = max_span_plus_1 | |
pad_amount_last_dim = (key_context_size + 1) - max_span_plus_1 | |
# PyTorch F.pad expects (pad_left, pad_right, pad_top, pad_bottom ...) | |
# We only pad the last dimension on the right. | |
padding_tuple = (0, pad_amount_last_dim) | |
term_bd_padded = nn.functional.pad(term_bd_before_shift, padding_tuple) | |
# Shape after pad: [B, N, U, W, C+1] | |
# Reshape for slicing (emulating JAX's behavior) | |
# [B, N, U, W * (C+1)] | |
term_bd_reshaped = term_bd_padded.reshape( | |
( | |
batch_size, | |
num_heads, | |
num_query_blocks, | |
query_block_size * (key_context_size + 1), | |
) | |
) | |
# Slice to effective [B, N, U, W * C] | |
term_bd_sliced = term_bd_reshaped[:, :, :, : query_block_size * key_context_size] | |
# Reshape back to [B, N, U, W, C] | |
term_bd_shifted = term_bd_sliced.reshape( | |
( | |
batch_size, | |
num_heads, | |
num_query_blocks, | |
query_block_size, | |
key_context_size, | |
) | |
) | |
return term_bd_shifted | |
def forward(self, queries: torch.Tensor, keys: torch.Tensor) -> torch.Tensor: | |
# queries: [B, U, W, N, H] (batch, num_query_blocks, query_block_size, num_heads, head_dim) | |
# keys: [B, U, C, N, H] (batch, num_query_blocks, key_context_size, num_heads, head_dim) | |
# C = W + L + R (key_context_size) | |
# F_span = L + R + 1 (max_span + 1) | |
batch_size, num_query_blocks, query_block_size, num_heads, head_dim = queries.shape | |
_, _, key_context_size, _, _ = keys.shape | |
# Relative positions for sinusoidal embeddings: [L, L-1, ..., -R] | |
# Length is L+R+1 = self.max_span + 1 | |
pos_indices = torch.arange(self.max_backward, -self.max_forward - 1, -1, device=queries.device).unsqueeze( | |
0 | |
) # Shape [1, F_span] | |
max_span_plus_1 = pos_indices.shape[1] # F_span | |
sin_emb_timing_signal = self._get_timing_signal_1d_pos( | |
pos_indices, dtype=queries.dtype | |
) # Shape [1, F_span, self.channels] | |
# Project sinusoidal embeddings: [1, F_span, self.channels] -> [1, F_span, N*H] | |
projected_sin_emb = self.pos_proj(sin_emb_timing_signal) | |
# Reshape to [1, F_span, N, H] then squeeze to [F_span, N, H] | |
sin_emb = projected_sin_emb.reshape(1, max_span_plus_1, self.num_heads, self.head_dim).squeeze( | |
0 | |
) # Shape [F, N, H] | |
# term_ac: Query-Key content interaction | |
# queries: [B, U, W, N, H] -> permute to [B, N, U, W, H] for matmul | |
# keys: [B, U, C, N, H] -> permute to [B, N, U, H, C] for matmul | |
queries_p = queries.permute(0, 3, 1, 2, 4) # [B, N, U, W, H] | |
keys_p_t = keys.permute(0, 3, 1, 4, 2) # [B, N, U, H, C] | |
term_ac = torch.matmul(queries_p, keys_p_t) # [B, N, U, W, C] | |
# term_bd: Query-Position interaction | |
# Original einsum: term_bd_unshifed = torch.einsum('buwnh,fnh->bnuwf', queries, sin_emb) | |
# queries shape: [B, U, W, N, H] | |
# sin_emb shape: [F, N, H] | |
# Target output shape: [B, N, U, W, F] | |
# Permute queries to [B, N, U, W, H] for easier broadcasting with sin_emb | |
q_permuted = queries.permute(0, 3, 1, 2, 4) | |
# Permute sin_emb to [N, H, F] to prepare for matmul | |
# sin_emb original is [F, N, H] | |
s_permuted = sin_emb.permute(1, 2, 0) # Shape: [N, H, F] | |
# Reshape queries for matmul: [B, N, U*W, H] | |
q_reshaped = q_permuted.reshape(batch_size, num_heads, num_query_blocks * query_block_size, head_dim) | |
# Perform matmul: [B, N, U*W, H] @ [N, H, F] | |
# s_permuted ([N, H, F]) will be broadcast to [B, N, H, F] | |
# Result: [B, N, U*W, F] | |
term_bd_unshifed_matmul = torch.matmul(q_reshaped, s_permuted) | |
# Reshape to target [B, N, U, W, F] | |
term_bd_unshifed = term_bd_unshifed_matmul.reshape( | |
batch_size, | |
num_heads, | |
num_query_blocks, | |
query_block_size, | |
max_span_plus_1, | |
) | |
# Apply relative shift to term_bd_unshifed | |
term_bd_shifted = self._relative_shift( | |
term_bd_unshifed, | |
batch_size, | |
num_heads, | |
num_query_blocks, | |
query_block_size, | |
key_context_size, | |
max_span_plus_1, | |
) # Shape [B, N, U, W, C] | |
return term_ac + term_bd_shifted | |
class Gemma3nAudioAttention(nn.Module): | |
def __init__(self, config: Gemma3nAudioConfig): | |
super().__init__() | |
self.config = config | |
self.num_heads = self.config.conf_num_attention_heads | |
self.hidden_size = self.config.hidden_size | |
self.head_dim = self.hidden_size // self.num_heads | |
self.chunk_size = self.config.conf_attention_chunk_size | |
self.max_future_horizon = self.config.conf_attention_context_right | |
self.max_past_horizon = max(0, self.config.conf_attention_context_left - 1) | |
self.attention_logits_soft_cap = self.config.conf_attention_logit_cap | |
self.context_size = self.chunk_size + self.max_past_horizon + self.max_future_horizon | |
self.relative_position_embedding = Gemma3nAudioRelativePositionEmbedding(config) | |
self.per_dim_scale = nn.Parameter(torch.zeros((self.head_dim,))) | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
q_scale = self.head_dim**-0.5 | |
r_softplus_0 = 1.0 / torch.nn.functional.softplus(torch.tensor(0.0)) | |
self.register_buffer("q_scale", (q_scale * r_softplus_0).clone().detach(), persistent=False) | |
lower_causal_mask = torch.tril( | |
torch.ones((self.context_size, self.chunk_size), dtype=torch.bool), | |
diagonal=0, | |
).T | |
upper_causal_mask = torch.tril( | |
torch.ones((self.chunk_size, self.context_size), dtype=torch.bool), | |
diagonal=self.max_past_horizon + self.max_future_horizon, | |
) | |
local_causal_valid_mask = torch.ones((self.chunk_size, self.context_size), dtype=torch.bool) | |
local_causal_valid_mask = local_causal_valid_mask * lower_causal_mask * upper_causal_mask | |
self.register_buffer("local_causal_valid_mask", local_causal_valid_mask, persistent=False) | |
self.register_buffer( | |
"softcap", | |
torch.tensor(self.attention_logits_soft_cap).float(), | |
persistent=False, | |
) | |
def _pad_dim1(self, x: torch.Tensor, pad_left: int, pad_right: int) -> torch.Tensor: | |
batch, _, *tail_shape = x.shape | |
left = x.new_zeros((batch, pad_left, *tail_shape)) | |
right = x.new_zeros((batch, pad_right, *tail_shape)) | |
x = torch.cat([left, x, right], dim=1) | |
return x | |
def _convert_to_block(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
"""Turns a sequence to non overlapping blocks. | |
Args: | |
hidden_states: a tensor of [batch, time, ...]. | |
Returns: | |
A tensor of [batch, num_blocks, block_size, ...], with necessary | |
paddings, | |
where output[:, i, ...] are x[:, i*block_size:(i+1)*block_size, ...]. | |
""" | |
shape = hidden_states.shape | |
b, t = shape[:2] | |
num_blocks = (t + self.chunk_size - 1) // self.chunk_size | |
if (padding_len := num_blocks * self.chunk_size - t) > 0: | |
hidden_states = self._pad_dim1(hidden_states, 0, padding_len) | |
permute_dims = (b, num_blocks, self.chunk_size) + shape[2:] | |
hidden_states = hidden_states.reshape(permute_dims).contiguous() | |
return hidden_states | |
def _extract_block_context(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
"""Extracts temporal context for every block. | |
Args: | |
hidden_states: a tensor of [batch, time, ...]. | |
Returns: | |
A tensor of [batch, num_blocks, context_size, ...], with necessary | |
paddings, | |
where context_size = block_size + left_context + right_context, | |
and output[:, i, ...] are x[:, start-left_context:end+right_context, | |
...], | |
start = i * block_size, end = (i + 1) * block_size. | |
""" | |
pad_left = self.max_past_horizon | |
# The JAX equivalent padding for signal.frame with pad_mode='valid' is | |
# (left_context, right_context + block_size - 1) on the time dimension. | |
# PyTorch's _pad_dim1 applies padding symmetrically if only one value is given, | |
# or (pad_dim_start, pad_dim_end) if two are given. | |
# Our _pad_dim1(x, pad_left, pad_right) pads dim -2 (time for [B,T,N,H]) | |
# or dim 1 (time for [B,T]). | |
# The current pad_right calculation matches the JAX effective padding. | |
pad_right = self.max_future_horizon + self.chunk_size - 1 | |
hidden_states = self._pad_dim1(hidden_states, pad_left, pad_right) | |
frame_len = self.context_size | |
frame_step = self.chunk_size | |
# Directly use unfold without the subframe_factor logic | |
# x.unfold(dimension, size, step) | |
# dimension=1 (time dimension, assuming x is [B, T_padded, ...]) | |
# size=frame_len (context_size) | |
# step=frame_step (chunk_size) | |
x_unfolded = hidden_states.unfold(dimension=1, size=frame_len, step=frame_step) | |
# If x was [B, T_padded], x_unfolded is [B, num_blocks, frame_len] | |
# If x was [B, T_padded, N, H], x_unfolded is [B, num_blocks, N, H, frame_len] | |
# We want to match JAX's typical output for such operations which might be | |
# [B, num_blocks, frame_len, N, H] if N, H are present. | |
# The relative_position_embedding expects keys as [B, U, C, N, H]. | |
# If x_unfolded is [B, U, N, H, C(frame_len)], we need to move C. | |
if hidden_states.ndim > 2 and x_unfolded.ndim > 3: # Check if inner dimensions (like N, H) exist | |
# Current shape after unfold for [B, T_pad, N, H] is [B, U, N, H, C] | |
# Target shape for keys in RPE: [B, U, C, N, H] | |
x_unfolded = torch.movedim(x_unfolded, source=-1, destination=2) | |
return x_unfolded.contiguous() | |
def forward(self, hidden_states: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor: | |
# sl.Dense uses jax.numpy.einsum("...a,abcd->...bcd") and jax.numpy.select() | |
qkv_shape = (*hidden_states.shape[:-1], self.num_heads, self.head_dim) | |
query_states = self.q_proj(hidden_states).reshape(qkv_shape).contiguous() | |
key_states = self.k_proj(hidden_states).reshape(qkv_shape).contiguous() | |
value_states = self.v_proj(hidden_states).reshape(qkv_shape).contiguous() | |
per_dim_scale_sp = torch.nn.functional.softplus(self.per_dim_scale) | |
broadcast_shape = (1, 1, 1, self.head_dim) | |
per_dim_scale_sp_broadcast = per_dim_scale_sp.view(broadcast_shape) | |
query_states = query_states * self.q_scale * per_dim_scale_sp_broadcast | |
batch_size, q_time = query_states.shape[:2] | |
query_blocks = self._convert_to_block(query_states) | |
key_blocks = self._extract_block_context(key_states) | |
value_blocks = self._extract_block_context(value_states) | |
num_query_blocks = query_blocks.shape[1] | |
# 1. Create a mask indicating originally valid positions. | |
original_valid_mask = ~mask # True for valid, False for padded | |
# 2. Extract blocks from this validity mask. | |
extracted_valid_mask_blocks = self._extract_block_context(original_valid_mask) | |
# If subframe_factor was used in _extract_block_context for a [B, T] input mask, | |
# the shape might be [B, U, C/SF, SF]. Reshape to [B, U, C]. | |
# batch_size and num_query_blocks are known from query_blocks. | |
# self.context_size is C. | |
if ( | |
extracted_valid_mask_blocks.ndim == 4 | |
and extracted_valid_mask_blocks.shape[2] * extracted_valid_mask_blocks.shape[3] == self.context_size | |
): | |
extracted_valid_mask_blocks = extracted_valid_mask_blocks.reshape( | |
batch_size, num_query_blocks, self.context_size | |
) | |
# After potential reshape, ensure it's [B, U, C] if it was from a [B,T] mask. | |
# This assertion might be too strict if _extract_block_context handles higher-rank inputs differently, | |
# but for the mask case, this should hold. | |
if extracted_valid_mask_blocks.shape != ( | |
batch_size, | |
num_query_blocks, | |
self.context_size, | |
): | |
raise ValueError( | |
"Shape of extracted_valid_mask_blocks" | |
f" {extracted_valid_mask_blocks.shape} is not ({batch_size}," | |
f" {num_query_blocks}, {self.context_size}) after potential reshape." | |
) | |
# 3. Expand dimensions for broadcasting with logits and causal mask. | |
# Target shape for broadcasting with logits [B,N,U,W,C] | |
# extracted_valid_mask_blocks to [B, 1, U, 1, C] | |
condition_from_input_validity = extracted_valid_mask_blocks.unsqueeze(1).unsqueeze(-2) | |
# self.local_causal_valid_mask is [W, C], True where allowed by local window. | |
# Expand to [1, 1, 1, W, C] | |
condition_from_causality = self.local_causal_valid_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0) | |
# 4. Combine the two conditions. | |
# final_condition will be True where a key is *both* originally valid *and* causally accessible. | |
# Broadcasts to [B, 1, U, W, C] | |
final_condition_for_where = torch.logical_and( | |
condition_from_input_validity, | |
condition_from_causality.to(condition_from_input_validity.device), # Ensure same device | |
) | |
# Embed queries and keys | |
logits = self.relative_position_embedding(query_blocks, key_blocks) | |
# Apply attention logit softcap | |
# Ensure softcap is on the same device as logits | |
softcap_val = self.softcap.to(logits.device) | |
logits = logits / softcap_val | |
logits = torch.tanh(logits) | |
logits = logits * softcap_val | |
# Apply the combined mask. | |
# final_condition_for_where will broadcast with logits [B,N,U,W,C] | |
logits = torch.where(final_condition_for_where, logits, torch.finfo(logits.dtype).min) | |
probabilities = torch.nn.functional.softmax(logits, dim=-1, dtype=torch.float32).to(dtype=value_blocks.dtype) | |
# context_vectors is adapted from jax.numpy.einsum("BNuwc,BucNH->BuwNH", ...) | |
b_dim, n_dim, u_dim, w_dim, c_dim = probabilities.shape | |
h_dim = value_blocks.shape[-1] | |
prob_bun = probabilities.permute(0, 2, 1, 3, 4).reshape(-1, w_dim, c_dim) | |
v_bun = value_blocks.permute(0, 1, 3, 2, 4).reshape(-1, c_dim, h_dim) | |
result_bmm = torch.bmm(prob_bun, v_bun) | |
context_vectors = result_bmm.reshape(b_dim, u_dim, n_dim, w_dim, h_dim).permute(0, 1, 3, 2, 4) | |
context_vectors = context_vectors.reshape( | |
( | |
batch_size, | |
num_query_blocks * self.chunk_size, | |
self.num_heads, | |
self.head_dim, | |
) | |
) | |
context_vectors = context_vectors[:, :q_time] | |
return context_vectors | |
class Gemma3nAudioCumulativeGroupNorm(nn.Module): | |
"""Applies Group Normalization cumulatively over the time dimension. | |
This layer normalizes the input by calculating the mean and variance | |
cumulatively over the time dimension (dim 1). The statistics are computed | |
over all feature dimensions (specified by `feature_dims` and `num_channels`) | |
for elements marked as valid by the optional `mask`. | |
If a `mask` is provided (True for valid, False for invalid/padded), | |
invalid time steps do not contribute to the statistics calculation, and | |
their corresponding output values are zeroed out. | |
Scale and bias, if enabled, are applied per-channel (last dimension). | |
This behavior is similar to JAX's `GroupNormalization` with `num_groups=1` | |
and `cumulative=True`. | |
""" | |
def __init__( | |
self, | |
num_channels: int, # Number of channels (size of the last dimension) | |
feature_dims: Sequence[int], # Sizes of non-channel feature dimensions, e.g., (H, W) for input [B,T,H,W,C] | |
eps: float = 1e-3, | |
): | |
super().__init__() | |
self.num_channels = num_channels | |
self.feature_dims = tuple(feature_dims) | |
self.eps = eps | |
# Scale parameter depends only on the channel dimension | |
self.weight = nn.Parameter(torch.ones(num_channels)) | |
# Axes for normalization: all dimensions except Batch (0) and Time (1). | |
# For input [B, T, *feature_dims, C], these are dims from 2 onwards. | |
self.reduction_axes = tuple(range(2, 2 + len(self.feature_dims) + 1)) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
"""Applies cumulative group norm, optionally using a mask. | |
Args: | |
hidden_states: Input tensor, shape [B, T, *feature_dims, C]. | |
Returns: | |
Normalized tensor with the same shape as x. | |
""" | |
expected_input_suffix = self.feature_dims + (self.num_channels,) | |
if hidden_states.shape[2:] != expected_input_suffix: | |
raise ValueError( | |
f"Input tensor shape suffix {hidden_states.shape[2:]} does not match expected" | |
f" suffix (feature_dims + num_channels) {expected_input_suffix}" | |
) | |
input_dtype = hidden_states.dtype | |
# Calculations are performed in float32 for numerical stability. | |
calc_dtype = torch.float32 | |
x_calc = hidden_states.to(calc_dtype) | |
# Prepare a broadcastable mask (`mask_calc`). | |
# If no mask is provided, treat all elements as valid | |
# (mask_calc is all ones). | |
# Otherwise, expand the [B, T] mask to [B, T, 1, ..., 1] for broadcasting. | |
mask_calc = torch.ones_like(x_calc, dtype=calc_dtype) | |
# Cumulative Statistics Calculation | |
# 1. Sum of values over reduction axes at each time step. | |
sum_values_at_t = torch.sum(x_calc, dim=self.reduction_axes, keepdim=True) | |
# 2. Cumulative sum of values over time. | |
cum_sum_values = torch.cumsum(sum_values_at_t, dim=1) | |
# 3. Count of valid elements in the normalization group at each time step. | |
# (A "group" here consists of all features at a given Batch, Time). | |
elements_in_group_at_t = torch.sum(mask_calc, dim=self.reduction_axes, keepdim=True) | |
# 4. Cumulative count of valid elements over time. | |
cum_count_elements = torch.cumsum(elements_in_group_at_t, dim=1) | |
# Avoid division by zero if all preceding elements were masked. | |
safe_cum_count_elements = torch.clamp(cum_count_elements, min=1.0) | |
# 5. Cumulative mean. | |
cum_mean = cum_sum_values / safe_cum_count_elements | |
# 6. Sum of squared differences from the cumulative mean. | |
# Only sum for valid elements: (x_calc - cum_mean)^2 * mask_calc. | |
# Using x_calc here for the difference, as cum_mean already accounts for masking. | |
squared_diff_from_mean = (x_calc - cum_mean).pow(2) | |
sum_sq_diff_at_t = torch.sum(squared_diff_from_mean, dim=self.reduction_axes, keepdim=True) | |
# 7. Cumulative sum of squared differences over time. | |
cum_sum_sq_diff = torch.cumsum(sum_sq_diff_at_t, dim=1) | |
# 8. Cumulative variance. | |
cum_variance = cum_sum_sq_diff / safe_cum_count_elements | |
# Normalize the input using the calculated cumulative statistics: | |
# (x - E[x]) / sqrt(Var[x] + eps) | |
normalized_x = (x_calc - cum_mean) * torch.rsqrt(cum_variance + self.eps) | |
# Apply affine transformation (scale and bias) if enabled. | |
# Scale and bias are applied per-channel (last dimension). | |
scale = self.weight.to(calc_dtype) | |
# Reshape for broadcasting: [C] -> [1, ..., 1, C] | |
scale_view_shape = [1] * (hidden_states.dim() - 1) + [self.num_channels] | |
normalized_x = normalized_x * scale.view(scale_view_shape) | |
# Zero out outputs for time steps that were originally masked (where mask_calc is 0). | |
# This ensures padded/invalid positions in the input result in zero output. | |
final_output = normalized_x * mask_calc | |
return final_output.to(input_dtype) | |
class Gemma3nAudioSSCPConvBlock(nn.Module): | |
"""A single convolution block for the SubSampleConvProjection. | |
This block consists of a 2D convolution, followed by CumulativeGroupNorm, | |
and a ReLU activation. It handles manual padding for the convolution. | |
""" | |
def __init__( | |
self, | |
config: Gemma3nAudioConfig, | |
idx: int, | |
input_freq_dim: int, # Changed from input_spatial_dim | |
manual_padding: tuple[int, int, int, int] = (0, 0, 0, 0), | |
): | |
super().__init__() | |
self.config = config | |
self.manual_padding = manual_padding | |
# in_channels is 1 for the first block, or C_out from previous block's conv | |
in_channels = 1 if idx == 0 else self.config.sscp_conv_channel_size[idx - 1] | |
out_channels = self.config.sscp_conv_channel_size[idx] | |
kernel_h, kernel_w = self.config.sscp_conv_kernel_size[idx] | |
stride_h, stride_w = self.config.sscp_conv_stride_size[idx] | |
self.conv = nn.Conv2d( | |
in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=( | |
kernel_h, | |
kernel_w, | |
), # Kernel (kH, kW) operates on (Time, Freq_dim) | |
stride=(stride_h, stride_w), | |
padding=(0, 0), # Manual padding is used | |
bias=False, | |
) | |
# Calculate output frequency dimension (f_out_conv) after this convolution. | |
# input_freq_dim is the unpadded width (feature dimension). | |
# self.manual_padding is (pad_F_left, pad_F_right, pad_T_top, pad_T_bottom) | |
f_in_padded = input_freq_dim + self.manual_padding[0] + self.manual_padding[1] | |
f_out_conv = (f_in_padded - kernel_w) // stride_w + 1 | |
self.norm = Gemma3nAudioCumulativeGroupNorm( | |
num_channels=out_channels, # Channels of the conv output | |
feature_dims=(f_out_conv,), # The frequency dimension size after conv | |
eps=self.config.sscp_conv_group_norm_eps, | |
) | |
self.activation = nn.ReLU() | |
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor: | |
# Input audio_encodings is [B, C_in, T_in, F_in] (e.g., C_in=1) | |
# manual_padding is (pad_F_left, pad_F_right, pad_T_top, pad_T_bottom) | |
# F.pad applies to last two dims: F_in then T_in | |
audio_encodings_padded = F.pad(audio_encodings, self.manual_padding, mode="constant", value=0.0) | |
# Expected padded shape for F_in, k_w=3, pad_F=(1,1) -> F_padded = F_in+2 | |
# Expected padded shape for T_in, k_h=3, pad_T=(0,2) -> T_padded = T_in+2 | |
audio_encodings_conv = self.conv(audio_encodings_padded) | |
# Expected conv output shape: [B, C_out, T_out, F_out] | |
# Input to norm is [B, T_out, F_out, C_out] | |
x_for_norm = audio_encodings_conv.permute(0, 2, 3, 1).contiguous() | |
x_normed = self.norm(x_for_norm) | |
# Output of norm is [B, T_out, F_out, C_out], permute back to [B, C_out, T_out, F_out] | |
audio_encodings_normed = x_normed.permute(0, 3, 1, 2).contiguous() | |
return self.activation(audio_encodings_normed) | |
class Gemma3nAudioSubSampleConvProjection(nn.Module): | |
def __init__(self, config: Gemma3nAudioConfig): | |
super().__init__() | |
self.config = config | |
current_f_for_block_input = config.input_feat_size # Start with original feature dim | |
calculated_block_padding = [] | |
calculated_f_out_dims = [] # Tracking frequency dimension output sizes | |
for i in range(2): # Assuming 2 conv layers as per sscp_conv_... arrays | |
kernel_h, kernel_w = config.sscp_conv_kernel_size[i] | |
stride_h, stride_w = config.sscp_conv_stride_size[i] | |
# Padding for Time (Height for Conv2d) - REVERSE_CAUSAL like | |
# JAX 'reverse_causal' padding is (0, kernel_size - 1) | |
pad_t_top = 0 | |
pad_t_bottom = kernel_h - 1 | |
# Frequency Padding (Width for Conv2d) | |
# Based on JAX effective padding (1,1) for F_in=10, K_w=3, S_w=2 | |
# and the successful test configuration. | |
# If kernel/stride/input_freq for frequency changes, this might need re-evaluation | |
# to match generic JAX 'SAME' behavior if it differs. | |
pad_f_left = 1 | |
pad_f_right = 1 | |
manual_padding_tuple = ( | |
pad_f_left, | |
pad_f_right, | |
pad_t_top, | |
pad_t_bottom, | |
) | |
calculated_block_padding.append(manual_padding_tuple) | |
# Calculate output frequency dimension after this convolution | |
# This uses the actual padding applied and kernel/stride. | |
f_in_padded = current_f_for_block_input + pad_f_left + pad_f_right | |
f_out_after_conv = (f_in_padded - kernel_w) // stride_w + 1 # Assuming dilation_w = 1 | |
calculated_f_out_dims.append(f_out_after_conv) | |
current_f_for_block_input = f_out_after_conv | |
self.conv_0 = Gemma3nAudioSSCPConvBlock( | |
idx=0, | |
input_freq_dim=config.input_feat_size, # Pass original feature dim | |
config=config, | |
manual_padding=calculated_block_padding[0], | |
) | |
self.conv_1 = Gemma3nAudioSSCPConvBlock( | |
idx=1, | |
input_freq_dim=calculated_f_out_dims[0], # Output freq dim from conv_0 | |
config=config, | |
manual_padding=calculated_block_padding[1], | |
) | |
final_c_out = config.sscp_conv_channel_size[-1] | |
final_f_out = calculated_f_out_dims[-1] # Final frequency dimension | |
self.input_proj_in_features = final_c_out * final_f_out | |
self.input_proj_linear = nn.Linear(self.input_proj_in_features, self.config.hidden_size, bias=False) | |
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor: | |
# audio_encodings is [B, T, F_in] | |
# Reshape to [B, 1, T, F_in] (Batch, Channels=1, Height=Time, Width=F_in) | |
audio_encodings_reshaped = audio_encodings.unsqueeze(1) | |
x = self.conv_0(audio_encodings_reshaped) | |
x = self.conv_1(x) | |
# x from conv_1 is [B, C_out_1, T_out_1, F_out_1] | |
b, c_out, t_out, f_out = x.shape | |
# Permute to [B, T_out_1, F_out_1, C_out_1] then flatten F_out_1 and C_out_1 | |
x_permuted = x.permute(0, 2, 3, 1).contiguous() | |
output_flattened = x_permuted.view(b, t_out, f_out * c_out) | |
output = self.input_proj_linear(output_flattened) | |
return output | |
class Gemma3nAudioConformerAttention(nn.Module): | |
def __init__(self, config: Gemma3nAudioConfig): | |
super().__init__() | |
self.config = config | |
self.post_in_features = self.config.hidden_size | |
self.register_buffer("gradient_clipping", torch.tensor(self.config.gradient_clipping), persistent=False) | |
self.pre_attn_norm = Gemma3nRMSNorm(self.config.hidden_size) | |
self.attn = Gemma3nAudioAttention(config) | |
self.post = nn.Linear(self.post_in_features, self.config.hidden_size, bias=False) | |
self.post_norm = Gemma3nRMSNorm(self.config.hidden_size) | |
def forward(self, audio_encodings: torch.Tensor, audio_mel_mask: torch.BoolTensor) -> torch.Tensor: | |
audio_encodings_input_to_attn = audio_encodings | |
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) | |
audio_encodings_norm = self.pre_attn_norm(audio_encodings) | |
# Output of self.attn is [B, T, NumHeads, HeadDim] | |
audio_encodings_attn_out = self.attn(audio_encodings_norm, audio_mel_mask) | |
# Reshape from [B, T, NumHeads, HeadDim] to [B, T, NumHeads * HeadDim] | |
# NumHeads * HeadDim = hidden_size | |
b, t, num_heads, head_dim = audio_encodings_attn_out.shape | |
audio_encodings_reshaped = audio_encodings_attn_out.reshape(b, t, num_heads * head_dim) | |
audio_encodings = self.post(audio_encodings_reshaped) | |
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) | |
return audio_encodings_input_to_attn + self.post_norm(audio_encodings) | |
class Gemma3nAudioConformerFeedForward(nn.Module): | |
def __init__(self, config: Gemma3nAudioConfig): | |
super().__init__() | |
self.config = config | |
self.register_buffer("gradient_clipping", torch.tensor(self.config.gradient_clipping), persistent=False) | |
self.pre_layer_norm = Gemma3nRMSNorm(self.config.hidden_size) | |
self.ffw_layer_1 = nn.Linear(self.config.hidden_size, self.config.hidden_size * 4, bias=False) | |
self.ffw_layer_2 = nn.Linear(self.config.hidden_size * 4, self.config.hidden_size, bias=False) | |
self.post_layer_norm = Gemma3nRMSNorm(self.config.hidden_size) | |
self.post_layer_scale = torch.tensor(self.config.conf_residual_weight) | |
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor: | |
residual = audio_encodings | |
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) | |
audio_encodings = self.pre_layer_norm(audio_encodings) | |
audio_encodings: torch.Tensor = self.ffw_layer_1(audio_encodings) | |
audio_encodings = nn.functional.silu(audio_encodings) | |
audio_encodings: torch.Tensor = self.ffw_layer_2(audio_encodings) | |
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) | |
audio_encodings = self.post_layer_norm(audio_encodings) | |
return residual + (audio_encodings * self.post_layer_scale) | |
class Gemma3nAudioConformerLightConv1d(nn.Module): | |
def __init__(self, config: Gemma3nAudioConfig): | |
super().__init__() | |
self.config = config | |
self.pre_layer_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) | |
self.linear_start = nn.Linear(self.config.hidden_size, self.config.hidden_size * 2, bias=False) | |
self.depthwise_conv1d = nn.Conv1d( | |
in_channels=self.config.hidden_size, | |
out_channels=self.config.hidden_size, | |
kernel_size=self.config.conf_conv_kernel_size, | |
stride=1, | |
padding=0, # Manual causal padding | |
groups=self.config.hidden_size, # Depthwise | |
bias=False, | |
) | |
self.register_buffer("gradient_clipping", torch.tensor(self.config.gradient_clipping), persistent=False) | |
self.conv_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) | |
self.linear_end = nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False) | |
self.causal_padding = self.config.conf_conv_kernel_size - 1 | |
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor: | |
audio_encodings_residual = audio_encodings # Save for residual connection | |
audio_encodings = self.pre_layer_norm(audio_encodings) | |
audio_encodings = self.linear_start(audio_encodings) | |
audio_encodings = torch.nn.functional.glu(audio_encodings, dim=-1) | |
# Permute for Conv1d: [B, T, D] -> [B, D, T] | |
audio_encodings_permuted = audio_encodings.permute(0, 2, 1) | |
# Apply manual causal padding | |
audio_encodings_permuted_padded = F.pad(audio_encodings_permuted, (self.causal_padding, 0)) | |
audio_encodings = self.depthwise_conv1d(audio_encodings_permuted_padded) | |
# Permute back: [B, D, T_out] -> [B, T_out, D] | |
audio_encodings = audio_encodings.permute(0, 2, 1) | |
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) | |
audio_encodings = self.conv_norm(audio_encodings) | |
audio_encodings = nn.functional.silu(audio_encodings) | |
audio_encodings = self.linear_end(audio_encodings) | |
output = audio_encodings + audio_encodings_residual | |
return output | |
class Gemma3nAudioConformerBlock(nn.Module): | |
def __init__(self, config: Gemma3nAudioConfig): | |
super().__init__() | |
self.config = config | |
self.ffw_layer_start = Gemma3nAudioConformerFeedForward(self.config) | |
self.attention = Gemma3nAudioConformerAttention(self.config) | |
self.lconv1d = Gemma3nAudioConformerLightConv1d(self.config) | |
self.ffw_layer_end = Gemma3nAudioConformerFeedForward(self.config) | |
self.register_buffer("gradient_clipping", torch.tensor(self.config.gradient_clipping), persistent=False) | |
self.norm = Gemma3nRMSNorm(self.config.hidden_size) | |
def forward(self, audio_encodings: torch.Tensor, audio_mel_mask: torch.BoolTensor) -> torch.Tensor: | |
audio_encodings = self.ffw_layer_start(audio_encodings) | |
audio_encodings = self.attention(audio_encodings, audio_mel_mask) | |
validity_mask_for_lconv = ~audio_mel_mask # True for valid | |
audio_encodings_for_lconv_input = audio_encodings * validity_mask_for_lconv.unsqueeze(-1).to( | |
audio_encodings.dtype | |
) | |
audio_encodings = self.lconv1d(audio_encodings_for_lconv_input) | |
audio_encodings = self.ffw_layer_end(audio_encodings) | |
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) | |
output = self.norm(audio_encodings) | |
return output | |
class Gemma3nAudioEncoder(PreTrainedModel): | |
"""An audio encoder based on the [Universal Speech Model](https://arxiv.org/abs/2303.01037) architecture.""" | |
config_class = Gemma3nAudioConfig | |
main_input_name = "audio_mel" | |
def __init__(self, config: Gemma3nAudioConfig): | |
super().__init__(config) | |
self.config = config | |
self.subsample_conv_projection = Gemma3nAudioSubSampleConvProjection(config) | |
self.conformer = nn.ModuleList( | |
[Gemma3nAudioConformerBlock(config) for _ in range(config.conf_num_hidden_layers)] | |
) | |
def forward( | |
self, audio_mel: torch.Tensor, audio_mel_mask: torch.BoolTensor | |
) -> tuple[torch.Tensor, torch.BoolTensor]: | |
"""Encodes a batch of MELs. | |
Args: | |
audio_mel: a torch.Tensor of shape [batch, num_frames, num_channels, | |
mel_bins]. | |
Returns: | |
audio_encodings: a torch.Tensor of shape | |
`[batch_size, self.config.audio_soft_tokens_per_image, | |
self.config.audio_config.hidden_size]` | |
audio_mel_mask: a torch.BoolTensor of shape [batch, num_frames]. | |
""" | |
audio_encodings = self.subsample_conv_projection(audio_mel) # audio_encodings: [B, T_sub, D] | |
# Subsample the input audio_mel_mask to match the time dimension of audio_encodings (T_sub) | |
t_sub = audio_encodings.shape[1] | |
time_stride_product = 1 | |
for stride_pair_idx in range(len(self.config.sscp_conv_stride_size)): | |
time_stride_product *= self.config.sscp_conv_stride_size[stride_pair_idx][0] | |
# Create indices for gathering from the original mask. | |
# These indices map to original time steps corresponding to the start of each | |
# receptive field in the subsampled output. | |
indices = torch.arange(t_sub, device=audio_mel_mask.device) * time_stride_product | |
indices = torch.clamp(indices, max=audio_mel_mask.shape[1] - 1) # Ensure indices are valid | |
# Expand indices for batch compatibility if B > 1 and indices is 1D. | |
if audio_mel_mask.ndim > 1 and indices.ndim == 1: | |
indices = indices.unsqueeze(0).expand(audio_mel_mask.shape[0], -1) # [B, T_sub] | |
elif ( | |
audio_mel_mask.ndim == indices.ndim | |
and audio_mel_mask.shape[0] == 1 | |
and indices.shape[0] != 1 | |
and t_sub == indices.shape[0] | |
): | |
# Handle case where B=1 but indices became [T_sub] instead of [1, T_sub] | |
indices = indices.unsqueeze(0) | |
current_mask = torch.gather(audio_mel_mask, 1, indices) # [B, T_sub] | |
for block in self.conformer: | |
audio_encodings = block(audio_encodings, current_mask) # Pass the processed mask | |
if self.config.conf_reduction_factor > 1: | |
audio_encodings = audio_encodings[:, :: self.config.conf_reduction_factor] | |
# Reduce the mask as well | |
current_mask = current_mask[:, :: self.config.conf_reduction_factor] | |
audio_encodings = audio_encodings.masked_fill(current_mask.unsqueeze(-1), 0.0) | |
return audio_encodings, current_mask | |
class Gemma3nTextScaledWordEmbedding(nn.Embedding): | |
""" | |
This module overrides nn.Embeddings' forward by multiplying with embeddings scale. | |
""" | |
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: float = 1.0): | |
super().__init__(num_embeddings, embedding_dim, padding_idx) | |
self.register_buffer("embed_scale", torch.tensor(embed_scale), persistent=False) | |
def forward(self, input_ids: torch.Tensor): | |
return super().forward(input_ids) * self.embed_scale.to(self.weight.dtype) | |
class Gemma3nTextLaurelBlock(nn.Module): | |
"""Learned Augmented Residual Layer""" | |
def __init__(self, config: Gemma3nTextConfig): | |
super().__init__() | |
self.config = config | |
self.linear_left = nn.Linear(self.config.hidden_size, self.config.laurel_rank, bias=False) | |
self.linear_right = nn.Linear(self.config.laurel_rank, self.config.hidden_size, bias=False) | |
self.post_laurel_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
laurel_hidden_states: torch.Tensor = self.linear_left(hidden_states) | |
laurel_hidden_states: torch.Tensor = self.linear_right(laurel_hidden_states) | |
normed_laurel_hidden_states = self.post_laurel_norm(laurel_hidden_states) | |
return hidden_states + normed_laurel_hidden_states | |
class Gemma3nTextMLP(nn.Module): | |
def __init__(self, config: Gemma3nTextConfig, layer_idx: int = 0): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.intermediate_size = config.intermediate_size[layer_idx] | |
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | |
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | |
self.act_fn = ACT2FN[config.hidden_activation] | |
self.activation_sparsity = config.activation_sparsity_pattern[layer_idx] | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
gate_proj = self.gate_proj(hidden_states) | |
if self.activation_sparsity > 0.0: | |
gate_proj = self._gaussian_topk(gate_proj) | |
activations = self.act_fn(gate_proj) | |
up_proj = self.up_proj(hidden_states) | |
down_proj = self.down_proj(activations * up_proj) | |
return down_proj | |
def _gaussian_topk(self, inputs: torch.Tensor) -> torch.Tensor: | |
target_sparsity_tensor = torch.tensor(self.activation_sparsity, dtype=torch.float32, device=inputs.device) | |
# normal_dist and std_multiplier are adapted from jax.scipy.stats.norm.ppf(). | |
# | |
# References: | |
# * https://docs.jax.dev/en/latest/_autosummary/jax.scipy.stats.norm.ppf.html | |
# * https://pytorch.org/docs/stable/distributions.html#torch.distributions.normal.Normal | |
# * https://pytorch.org/docs/stable/distributions.html#torch.distributions.transformed_distribution.TransformedDistribution.icdf | |
normal_dist = torch.distributions.normal.Normal(0, 1) | |
std_multiplier: torch.Tensor = normal_dist.icdf(target_sparsity_tensor) | |
std_multiplier = std_multiplier.type(inputs.dtype) | |
inputs_mean = torch.mean(inputs, dim=-1, keepdim=True) | |
inputs_std = torch.std(inputs, dim=-1, keepdim=True, unbiased=False) | |
cutoff_x = inputs_mean + inputs_std * std_multiplier | |
return nn.functional.relu(inputs - cutoff_x) | |
class Gemma3nTextAltUp(nn.Module): | |
"""Alternating Updates (AltUp) | |
The AltUp module wraps transformer layers. The `predict` step modifies the | |
input to the transformer layer, and the `correct` step propagates the output | |
of the transformer layer to the sparsely updated dimensions. | |
See more in the research paper: | |
https://proceedings.neurips.cc/paper_files/paper/2023/file/f2059277ac6ce66e7e5543001afa8bb5-Paper-Conference.pdf | |
""" | |
def __init__(self, config: Gemma3nTextConfig): | |
super().__init__() | |
self.config = config | |
self.correct_output_scale = nn.Parameter(torch.zeros(self.config.hidden_size)) | |
self.correction_coefs = nn.Linear(self.config.altup_num_inputs, self.config.altup_num_inputs, bias=False) | |
self.prediction_coefs = nn.Linear(self.config.altup_num_inputs, self.config.altup_num_inputs**2, bias=False) | |
self.modality_router = nn.Linear(self.config.hidden_size, self.config.altup_num_inputs, bias=False) | |
self.router_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) | |
self.register_buffer("router_input_scale", torch.tensor(self.config.hidden_size**-1.0), persistent=False) | |
def compute_router_modalities(self, x: torch.Tensor) -> torch.Tensor: | |
router_inputs = self.router_norm(x) * self.router_input_scale | |
routed = self.modality_router(router_inputs) | |
return torch.tanh(routed.float()).type_as(x) | |
def predict(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
"""Predicts the output of a layer using a trainable map. | |
Args: | |
hidden_states: A 4D tensor of shape `[num_altup_inputs, batch_size, num_tokens, hidden_size]` derived by | |
stacking the input embeddings and preprocessing the last `num_altup_inputs - 1` matrices. | |
Returns: | |
A 4D tensor of shape `[num_altup_inputs, batch_size, num_tokens, hidden_size]` containing the predictions. | |
""" | |
modalities = self.compute_router_modalities(hidden_states[self.config.altup_active_idx]) | |
if self.training and self.config.altup_coef_clip is not None: | |
self.prediction_coefs.weight.data.clamp_(-self.config.altup_coef_clip, self.config.altup_coef_clip) | |
# Project and then transpose all 2D matrices contained so that mulmat gives the correct result | |
all_coefs: torch.Tensor = ( | |
self.prediction_coefs(modalities) | |
.reshape(*modalities.shape[:-1], self.config.altup_num_inputs, self.config.altup_num_inputs) | |
.permute(0, 1, 3, 2) | |
) | |
# permute hidden_states to [batch_size, num_tokens, hidden_size, altup_num_inputs] | |
predictions = torch.matmul(hidden_states.permute(1, 2, 3, 0), all_coefs) | |
predictions = predictions.permute(3, 0, 1, 2) # undo the permute | |
predictions += hidden_states # add the original input | |
return predictions.contiguous().type_as(hidden_states) | |
def correct(self, predictions: torch.Tensor, activated: torch.Tensor) -> torch.Tensor: | |
"""Corrects the predictions relative to the | |
Args: | |
predictions: A 4D tensor of shape `[num_altup_inputs, batch_size, num_tokens, hidden_size]` derived by | |
stacking the input embeddings and preprocessing the last `num_altup_inputs - 1` matrices. | |
activated: A 3D tensor of shape `[batch_size, num_tokens, hidden_size]` containing the activated inputs. | |
Returns: | |
A 4D tensor of shape `[num_altup_inputs, batch_size, num_tokens, hidden_size]` correcting the original | |
predictions relative to the activated input embeddings. | |
""" | |
modalities = self.compute_router_modalities(activated) | |
innovation = activated - predictions[self.config.altup_active_idx] # (batch, num_tokens, hidden_size) | |
innovation = innovation.repeat(self.config.altup_num_inputs, 1, 1, 1) # Repeat on dim0 to match predictions | |
if self.config.altup_coef_clip is not None: | |
self.correction_coefs.weight.data.clamp_(-self.config.altup_coef_clip, self.config.altup_coef_clip) | |
# all_coefs adapted from jax.numpy.einsum("...p,pi->...i", ...) | |
# Permute to (altup_num_inputs, batch_size, num_tokens) as the last dim is a scalar applied to each altup input | |
# and expand on dim1 for broadcastability | |
all_coefs: torch.Tensor = self.correction_coefs(modalities) + 1.0 | |
all_coefs = all_coefs.permute(2, 0, 1).unsqueeze(-1) | |
corrected = torch.mul(innovation, all_coefs) | |
corrected += predictions # add the original input | |
return corrected.contiguous().type_as(activated) | |
def forward(self, corrected: torch.Tensor) -> torch.Tensor: | |
""" | |
This is only defined as the `forward` so that accelerate hooks can move correctly `correct_output_scale` | |
(which is a nn.Parameter, not a Module) between devices when offloading. It is otherwise only used in | |
`scale_corrected_output` | |
""" | |
return (corrected.type_as(self.correct_output_scale) * self.correct_output_scale).type_as(corrected) | |
def scale_corrected_output(self, corrected: torch.Tensor) -> torch.Tensor: | |
"""Scales the provided 3D tensor of shape [batch_size, num_tokens, hidden_size].""" | |
return self.forward(corrected) | |
class Gemma3nTextRotaryEmbedding(nn.Module): | |
def __init__(self, config: Gemma3nTextConfig, device=None): | |
super().__init__() | |
# BC: "rope_type" was originally "type" | |
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: | |
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) | |
else: | |
self.rope_type = "default" | |
self.max_seq_len_cached = config.max_position_embeddings | |
self.original_max_seq_len = config.max_position_embeddings | |
self.config = config | |
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] | |
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) | |
self.register_buffer("inv_freq", inv_freq, persistent=False) | |
self.original_inv_freq = self.inv_freq | |
# power user: used with advanced RoPE types (e.g. dynamic rope) | |
def forward(self, x, position_ids): | |
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) | |
position_ids_expanded = position_ids[:, None, :].float() | |
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" | |
with torch.autocast(device_type=device_type, enabled=False): # Force float32 | |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | |
emb = torch.cat((freqs, freqs), dim=-1) | |
cos = emb.cos() * self.attention_scaling | |
sin = emb.sin() * self.attention_scaling | |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | |
def rotate_half(x): | |
"""Rotates half the hidden dims of the input.""" | |
x1 = x[..., : x.shape[-1] // 2] | |
x2 = x[..., x.shape[-1] // 2 :] | |
return torch.cat((-x2, x1), dim=-1) | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
def eager_attention_forward( | |
module: nn.Module, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
attention_mask: Optional[torch.Tensor], | |
dropout: float = 0.0, | |
scaling: Optional[float] = None, | |
softcap: Optional[float] = None, | |
**kwargs, | |
) -> tuple[torch.Tensor, torch.Tensor]: | |
if scaling is None: | |
scaling = module.head_dim**-0.5 | |
key_states = repeat_kv(key, module.num_key_value_groups) | |
value_states = repeat_kv(value, module.num_key_value_groups) | |
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling | |
if softcap is not None: | |
attn_weights = attn_weights / softcap | |
attn_weights = torch.tanh(attn_weights) | |
attn_weights = attn_weights * softcap | |
if attention_mask is not None: # no matter the length, we just slice it | |
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | |
attn_weights = attn_weights + causal_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
return attn_output, attn_weights | |
def apply_rotary_pos_emb( | |
x: torch.Tensor, | |
cos: torch.Tensor, | |
sin: torch.Tensor, | |
position_ids: Optional[torch.Tensor] = None, | |
unsqueeze_dim: int = 1, | |
): | |
"""Applies Rotary Position Embedding to the query and key tensors. | |
Args: | |
x (`torch.Tensor`): The tensor to embed. | |
cos (`torch.Tensor`): The cosine part of the rotary embedding. | |
sin (`torch.Tensor`): The sine part of the rotary embedding. | |
position_ids (`torch.Tensor`, *optional*): | |
Deprecated and unused. | |
unsqueeze_dim (`int`, *optional*, defaults to 1): | |
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | |
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | |
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | |
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | |
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | |
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | |
Returns: | |
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | |
""" | |
cos = cos.unsqueeze(unsqueeze_dim) | |
sin = sin.unsqueeze(unsqueeze_dim) | |
return (x * cos) + (rotate_half(x) * sin) | |
class Gemma3nTextAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
def __init__(self, config: Gemma3nTextConfig, layer_idx: int): | |
super().__init__() | |
self.is_sliding = config.layer_types[layer_idx] == "sliding_attention" | |
self.config = config | |
self.layer_idx = layer_idx | |
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) | |
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads | |
self.attention_dropout = self.config.attention_dropout | |
self.is_causal = True | |
self.q_proj = nn.Linear( | |
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias | |
) | |
self.k_proj = nn.Linear( | |
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias | |
) | |
self.v_proj = nn.Linear( | |
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias | |
) | |
self.o_proj = nn.Linear( | |
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias | |
) | |
self.sliding_window = config.sliding_window if self.is_sliding else None | |
self.q_norm = Gemma3nRMSNorm(dim=config.head_dim, eps=config.rms_norm_eps) | |
self.k_norm = Gemma3nRMSNorm(dim=config.head_dim, eps=config.rms_norm_eps) | |
self.v_norm = Gemma3nRMSNorm(dim=config.head_dim, eps=config.rms_norm_eps, with_scale=False) | |
first_kv_shared_layer_idx = self.config.num_hidden_layers - self.config.num_kv_shared_layers | |
self.is_kv_shared_layer = layer_idx >= first_kv_shared_layer_idx > 0 | |
# Find the index of the last sliding or full layer before sharing starts (or None if no sharing) | |
layer_type = config.layer_types[layer_idx] | |
self.kv_shared_layer_index = ( | |
first_kv_shared_layer_idx - 1 - config.layer_types[first_kv_shared_layer_idx - 1 :: -1].index(layer_type) | |
if self.is_kv_shared_layer | |
else None | |
) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
position_embeddings: torch.Tensor, | |
attention_mask: Optional[torch.Tensor], | |
past_key_value: Optional[Cache] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs: Unpack[FlashAttentionKwargs], | |
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: | |
input_shape = hidden_states.shape[:-1] | |
hidden_shape = (*input_shape, -1, self.config.head_dim) | |
cos, sin = position_embeddings | |
query_states = self.q_proj(hidden_states).view(hidden_shape) | |
query_states = self.q_norm(query_states) | |
query_states = apply_rotary_pos_emb(query_states, cos, sin, unsqueeze_dim=2) | |
query_states = query_states.transpose(1, 2) | |
if self.is_kv_shared_layer and self.kv_shared_layer_index is not None and past_key_value is not None: | |
# Device of past layer may be different from current one | |
indices = cache_position.to(past_key_value.key_cache[self.kv_shared_layer_index].device) | |
# In this case we need special handling of the slice as the layer is of fixed small size (for full layers, we never go beyond) | |
if isinstance(past_key_value, HybridCache) and self.is_sliding: | |
max_length = past_key_value.sliding_window | |
indices = ( | |
slice(0, max_length) | |
if cache_position.shape[0] > max_length | |
else cache_position.clamp(min=0, max=max_length - 1) | |
) | |
# Device of past layer may be different from current one | |
key_states = past_key_value.key_cache[self.kv_shared_layer_index][:, :, indices].to(query_states.device) | |
value_states = past_key_value.value_cache[self.kv_shared_layer_index][:, :, indices].to( | |
query_states.device | |
) | |
else: | |
key_states = self.k_proj(hidden_states).view(hidden_shape) | |
key_states = self.k_norm(key_states) | |
key_states = apply_rotary_pos_emb(key_states, cos, sin, unsqueeze_dim=2) | |
key_states = key_states.transpose(1, 2) | |
value_states = self.v_proj(hidden_states).view(hidden_shape) | |
value_states = self.v_norm(value_states) | |
value_states = value_states.transpose(1, 2) | |
if past_key_value is not None: | |
# sin and cos are specific to RoPE models; cache_position needed for the static cache | |
cache_kwargs = { | |
"sin": sin, | |
"cos": cos, | |
"cache_position": cache_position, | |
"sliding_window": self.sliding_window, | |
} | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | |
attention_interface: Callable = eager_attention_forward | |
if self.config._attn_implementation != "eager": | |
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] | |
attn_output, attn_weights = attention_interface( | |
self, | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
dropout=self.attention_dropout if self.training else 0.0, | |
scaling=1.0, | |
sliding_window=self.sliding_window, | |
**kwargs, | |
) | |
attn_output = attn_output.reshape(*input_shape, -1).contiguous() | |
attn_output = self.o_proj(attn_output) | |
return attn_output, attn_weights | |
class Gemma3nTextDecoderLayer(GradientCheckpointingLayer): | |
def __init__(self, config: Gemma3nTextConfig, layer_idx: int): | |
super().__init__() | |
self.config = config | |
self.hidden_size = config.hidden_size | |
self.layer_idx = layer_idx | |
self.attention_type = config.layer_types[layer_idx] | |
self.self_attn = Gemma3nTextAttention(config, layer_idx) | |
self.mlp = Gemma3nTextMLP(config, layer_idx=layer_idx) | |
self.input_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps) | |
self.pre_feedforward_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps) | |
self.post_feedforward_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps) | |
self.hidden_size_per_layer_input = config.hidden_size_per_layer_input | |
self.act_fn = ACT2FN[config.hidden_activation] | |
self.altup = Gemma3nTextAltUp(config) | |
self.laurel = Gemma3nTextLaurelBlock(config) | |
self.per_layer_input_gate = nn.Linear(self.hidden_size, self.hidden_size_per_layer_input, bias=False) | |
self.per_layer_projection = nn.Linear(self.hidden_size_per_layer_input, self.hidden_size, bias=False) | |
self.post_per_layer_input_norm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
position_embeddings_global: torch.Tensor, | |
position_embeddings_local: torch.Tensor, | |
per_layer_input: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
cache_position: Optional[torch.LongTensor] = None, | |
**kwargs, | |
) -> tuple[torch.Tensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
predictions = self.altup.predict(hidden_states) | |
active_prediction = predictions[self.config.altup_active_idx] | |
active_prediction_normed = self.input_layernorm(active_prediction) | |
laurel_output = self.laurel(active_prediction_normed) | |
# apply global RoPE to non-sliding layer only | |
if self.self_attn.is_sliding: | |
position_embeddings = position_embeddings_local | |
else: | |
position_embeddings = position_embeddings_global | |
attn, self_attn_weights = self.self_attn( | |
hidden_states=active_prediction_normed, | |
position_embeddings=position_embeddings, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_value, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
**kwargs, | |
) | |
attn = self.post_attention_layernorm(attn) | |
attn_gated = active_prediction + attn | |
attn_laurel = (attn_gated + laurel_output) / math.sqrt(2) | |
attn_norm = self.pre_feedforward_layernorm(attn_laurel) | |
attn_ffw = self.mlp(attn_norm) | |
attn_ffw_norm = self.post_feedforward_layernorm(attn_ffw) | |
attn_ffw_laurel_gated = attn_laurel + attn_ffw_norm | |
corrected_predictions = self.altup.correct(predictions, attn_ffw_laurel_gated) | |
first_prediction = corrected_predictions[self.config.altup_active_idx].clone() | |
if self.config.altup_correct_scale: | |
first_prediction = self.altup.scale_corrected_output(first_prediction) | |
# per_layer_input_gate adapted from jax.numpy.einsum("btd,dp->btp", ...) | |
first_prediction = self.per_layer_input_gate(first_prediction) | |
first_prediction = self.act_fn(first_prediction) | |
first_prediction = torch.multiply(first_prediction, per_layer_input) | |
# per_layer_projection adapted from jax.numpy.einsum("btp,pd->btd", ...) | |
first_prediction = self.per_layer_projection(first_prediction) | |
first_prediction = self.post_per_layer_input_norm(first_prediction) | |
corrected_predictions[1:] += first_prediction | |
outputs = (corrected_predictions,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
return outputs | |
class Gemma3nPreTrainedModel(PreTrainedModel): | |
config_class = Gemma3nConfig | |
base_model_prefix = "" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["Gemma3nTextDecoderLayer"] | |
_skip_keys_device_placement = ["past_key_values"] | |
_supports_flash_attn_3 = True | |
_supports_flash_attn_2 = True | |
_supports_sdpa = True | |
_supports_flex_attn = True | |
_supports_cache_class = True | |
_supports_quantized_cache = True | |
_supports_static_cache = True | |
_supports_attention_backend = True | |
def _init_weights(self, module): | |
# important: this ported version of Gemma2 isn't meant for training from scratch - only | |
# inference and fine-tuning - so the proper init weights code has been removed | |
std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range) | |
if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d)): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
elif isinstance(module, Gemma3nRMSNorm): | |
if module.with_scale: | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, Gemma3nAudioCumulativeGroupNorm): | |
module.weight.data.fill_(1.0) | |
elif isinstance(module, Gemma3nAudioAttention): | |
module.per_dim_scale.data.zero_() | |
elif isinstance(module, Gemma3nTextAltUp): | |
module.correct_output_scale.data.zero_() | |
class Gemma3nTextModel(Gemma3nPreTrainedModel): | |
config_class = Gemma3nTextConfig | |
def __init__(self, config: Gemma3nTextConfig): | |
super().__init__(config) | |
self.padding_idx = config.pad_token_id | |
self.vocab_size = config.vocab_size | |
# Gemma3n downcasts the below to bfloat16, causing sqrt(3072)=55.4256 to become 55.5. See https://github.com/huggingface/transformers/pull/29402 | |
self.embed_tokens = Gemma3nTextScaledWordEmbedding( | |
config.vocab_size, config.hidden_size, self.padding_idx, embed_scale=self.config.hidden_size**0.5 | |
) | |
self.layers = nn.ModuleList( | |
[Gemma3nTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | |
) | |
self.norm = Gemma3nRMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.rotary_emb = Gemma3nTextRotaryEmbedding(config=config) | |
self.gradient_checkpointing = False | |
# TODO (raushan): Fix this after RoPE refactor. For now we hack it by | |
# reassigning thetas when we want to create a local RoPE layer. Config | |
# defaults should hold values for global RoPE. | |
config = copy.deepcopy(config) | |
config.rope_theta = config.rope_local_base_freq | |
config.rope_scaling = {"rope_type": "default"} | |
self.rotary_emb_local = Gemma3nTextRotaryEmbedding(config=config) | |
self.hidden_size = config.hidden_size | |
self.hidden_size_per_layer_input = config.hidden_size_per_layer_input | |
self.embed_tokens_per_layer = Gemma3nTextScaledWordEmbedding( | |
config.vocab_size_per_layer_input, | |
config.num_hidden_layers * config.hidden_size_per_layer_input, | |
self.padding_idx, | |
embed_scale=config.hidden_size_per_layer_input**0.5, | |
) | |
self.per_layer_model_projection = nn.Linear( | |
self.hidden_size, | |
config.num_hidden_layers * config.hidden_size_per_layer_input, | |
bias=False, | |
) | |
self.per_layer_projection_norm = Gemma3nRMSNorm(config.hidden_size_per_layer_input, eps=config.rms_norm_eps) | |
self.altup_projections = nn.ModuleList( | |
[nn.Linear(self.hidden_size, self.hidden_size, bias=False) for _ in range(1, self.config.altup_num_inputs)] | |
) | |
self.altup_unembed_projections = nn.ModuleList( | |
[nn.Linear(self.hidden_size, self.hidden_size, bias=False) for _ in range(1, self.config.altup_num_inputs)] | |
) | |
self.register_buffer("per_layer_projection_scale", torch.tensor(self.hidden_size**-0.5), persistent=False) | |
self.register_buffer("per_layer_input_scale", torch.rsqrt(torch.tensor(2.0)), persistent=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.embed_tokens | |
def set_input_embeddings(self, value): | |
self.embed_tokens = value | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
per_layer_inputs: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Cache] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], | |
) -> BaseModelOutputWithPast: | |
r""" | |
per_layer_inputs (torch.Tensor, *optional*, defaults to None): | |
Pre-computed per-layer embeddings. If None, they are derived from input_ids if provided. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
if (input_ids is None) ^ (inputs_embeds is not None): | |
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | |
if self.gradient_checkpointing and self.training and use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." | |
) | |
use_cache = False | |
if input_ids is not None: | |
inputs_embeds = self.embed_tokens(input_ids) | |
per_layer_inputs = self.get_per_layer_inputs(input_ids) | |
per_layer_inputs = self.project_per_layer_inputs(inputs_embeds, per_layer_inputs) | |
if use_cache and past_key_values is None and not self.training: | |
past_key_values = DynamicCache() | |
if cache_position is None: | |
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | |
cache_position = torch.arange( | |
past_seen_tokens, | |
past_seen_tokens + inputs_embeds.shape[1], | |
device=inputs_embeds.device, | |
) | |
if position_ids is None: | |
position_ids = cache_position.unsqueeze(0) | |
# It may already have been prepared by e.g. `generate` | |
if not isinstance(causal_mask_mapping := attention_mask, dict): | |
# Prepare mask arguments | |
mask_kwargs = { | |
"config": self.config, | |
"input_embeds": inputs_embeds, | |
"attention_mask": attention_mask, | |
"cache_position": cache_position, | |
"past_key_values": past_key_values, | |
} | |
# Create the masks | |
causal_mask_mapping = { | |
"full_attention": create_causal_mask(**mask_kwargs), | |
"sliding_attention": create_sliding_window_causal_mask(**mask_kwargs), | |
} | |
# embed positions | |
hidden_states_0 = inputs_embeds | |
# Initialize RoPE embeddings | |
position_embeddings_global = self.rotary_emb(hidden_states_0, position_ids) | |
position_embeddings_local = self.rotary_emb_local(hidden_states_0, position_ids) | |
# Expand hidden_states to support per-layer inputs | |
target_magnitude = torch.mean(hidden_states_0**2, dim=-1, keepdim=True) ** 0.5 | |
epsilon_tensor = torch.tensor(1e-5) | |
temp_hidden_states = [hidden_states_0] | |
for i in range(1, self.config.altup_num_inputs): | |
# altup_proj adapted from jax.numpy.einsum("btp,pd->btd", ...) | |
altup_proj = self.altup_projections[i - 1](hidden_states_0) | |
current_hidden_state = altup_proj.to(dtype=hidden_states_0.dtype, device=target_magnitude.device) | |
new_magnitude = torch.mean(current_hidden_state**2, dim=-1, keepdim=True) | |
new_magnitude = torch.sqrt(torch.maximum(new_magnitude, epsilon_tensor.to(target_magnitude.device))) | |
current_hidden_state = current_hidden_state * target_magnitude / new_magnitude | |
temp_hidden_states.append(current_hidden_state) | |
hidden_states = torch.stack(temp_hidden_states, dim=0) # [num_altup_inputs, batch, seq_len, hidden_size] | |
# decoder layers | |
all_hidden_states = () if output_hidden_states else None | |
all_self_attns = () if output_attentions else None | |
for decoder_layer in self.layers[: self.config.num_hidden_layers]: | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
causal_mask = causal_mask_mapping[decoder_layer.attention_type] | |
per_layer_input = per_layer_inputs[:, :, decoder_layer.layer_idx, :] | |
layer_outputs = decoder_layer( | |
hidden_states, | |
position_embeddings_global, | |
position_embeddings_local, | |
per_layer_input, | |
attention_mask=causal_mask, | |
position_ids=position_ids, | |
past_key_value=past_key_values, | |
output_attentions=output_attentions, | |
use_cache=use_cache, | |
cache_position=cache_position, | |
**flash_attn_kwargs, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_self_attns += (layer_outputs[1],) | |
# add hidden states from the last decoder layer (but before reprojecting to stay consistent with layer output) | |
if output_hidden_states: | |
all_hidden_states += (hidden_states,) | |
# Per-layer inputs to single output | |
target_magnitude = torch.mean(hidden_states[0] ** 2, dim=-1, keepdim=True) ** 0.5 | |
temp_hidden_states = [hidden_states[0]] | |
for i in range(1, self.config.altup_num_inputs): | |
# altup_unembed_projections adapted from jax.numpy.einsum("btp,pd->btd", ...) | |
altup_unemb_proj: torch.Tensor = self.altup_unembed_projections[i - 1](hidden_states[i]) | |
current_hidden_state = altup_unemb_proj.to(dtype=hidden_states_0.dtype, device=target_magnitude.device) | |
new_magnitude = torch.mean(current_hidden_state**2, dim=-1, keepdim=True) | |
new_magnitude = torch.sqrt(torch.maximum(new_magnitude, epsilon_tensor.to(target_magnitude.device))) | |
current_hidden_state = current_hidden_state * target_magnitude / new_magnitude | |
temp_hidden_states.append(current_hidden_state) | |
hidden_states = torch.stack(temp_hidden_states) | |
hidden_states = torch.mean(hidden_states, dim=0) | |
hidden_states = self.norm(hidden_states) | |
return BaseModelOutputWithPast( | |
last_hidden_state=hidden_states, | |
past_key_values=past_key_values, | |
hidden_states=all_hidden_states, | |
attentions=all_self_attns, | |
) | |
def get_per_layer_inputs(self, input_ids: torch.LongTensor) -> torch.Tensor: | |
return self.embed_tokens_per_layer(input_ids).reshape( | |
*input_ids.shape, | |
self.config.num_hidden_layers, | |
self.hidden_size_per_layer_input, | |
) | |
def project_per_layer_inputs( | |
self, | |
inputs_embeds: torch.Tensor, | |
per_layer_inputs: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
per_layer_projection: torch.Tensor = self.per_layer_model_projection(inputs_embeds) | |
per_layer_projection *= self.per_layer_projection_scale.to( | |
dtype=inputs_embeds.dtype, device=per_layer_projection.device | |
) | |
per_layer_projection = per_layer_projection.reshape( | |
*inputs_embeds.shape[:-1], | |
self.config.num_hidden_layers, | |
self.hidden_size_per_layer_input, | |
) | |
per_layer_projection = self.per_layer_projection_norm(per_layer_projection) | |
if per_layer_inputs is None: | |
return per_layer_projection | |
if per_layer_projection.shape != per_layer_inputs.shape: | |
# per-layer inputs are sometimes padded with zeros, slice the relevant embeddings. | |
per_layer_inputs = per_layer_inputs[..., : self.config.num_hidden_layers, :] | |
return (per_layer_projection + per_layer_inputs) * self.per_layer_input_scale.to( | |
dtype=inputs_embeds.dtype, device=per_layer_projection.device | |
) | |
class Gemma3nForCausalLM(Gemma3nPreTrainedModel, GenerationMixin): | |
_tied_weights_keys = ["lm_head.weight"] | |
_tp_plan = {"lm_head": "colwise_rep"} | |
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} | |
config_class = Gemma3nTextConfig | |
base_model_prefix = "model" | |
_checkpoint_conversion_mapping = {"model.language_model": "model"} | |
def __init__(self, config: Gemma3nTextConfig): | |
super().__init__(config) | |
self.model = Gemma3nTextModel(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.embed_tokens | |
def set_input_embeddings(self, value): | |
self.model.embed_tokens = value | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model = decoder | |
def get_decoder(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Cache] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
logits_to_keep: Union[int, torch.Tensor] = 0, | |
**loss_kwargs, | |
) -> CausalLMOutputWithPast: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, Gemma3nForCausalLM | |
>>> model = Gemma3nForCausalLM.from_pretrained("google/gemma-2-9b") | |
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b") | |
>>> prompt = "What is your favorite condiment?" | |
>>> inputs = tokenizer(prompt, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"What is your favorite condiment?" | |
```""" | |
if self.training and self.config._attn_implementation != "eager": | |
logger.warning_once( | |
"It is strongly recommended to train Gemma3n models with the `eager` attention implementation " | |
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`." | |
) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs: BaseModelOutputWithPast = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
cache_position=cache_position, | |
**loss_kwargs, | |
) | |
hidden_states = outputs.last_hidden_state | |
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss | |
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | |
logits = self.lm_head(hidden_states[:, slice_indices, :]) | |
if self.config.final_logit_softcapping is not None: | |
logits = logits / self.config.final_logit_softcapping | |
logits = torch.tanh(logits) | |
logits = logits * self.config.final_logit_softcapping | |
loss = None | |
if labels is not None: | |
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
class Gemma3nMultimodalEmbedder(nn.Module): | |
"""Embeds token ids or soft tokens for multimodal content into language model space.""" | |
def __init__( | |
self, | |
multimodal_config: Union[Gemma3nAudioConfig, Gemma3nVisionConfig], | |
text_config: Gemma3nTextConfig, | |
): | |
super().__init__() | |
self.multimodal_hidden_size = multimodal_config.hidden_size | |
self.eps = multimodal_config.rms_norm_eps | |
self.vocab_offset = multimodal_config.vocab_offset | |
self.vocab_size = multimodal_config.vocab_size | |
self.text_hidden_size = text_config.hidden_size | |
self.embedding = nn.Embedding(self.vocab_size, self.multimodal_hidden_size) | |
self.hard_embedding_norm = Gemma3nRMSNorm(self.multimodal_hidden_size, eps=self.eps) | |
self.soft_embedding_norm = Gemma3nRMSNorm(self.multimodal_hidden_size, eps=self.eps) | |
self.embedding_projection = nn.Linear(self.multimodal_hidden_size, self.text_hidden_size, bias=False) | |
self.embedding_post_projection_norm = Gemma3nRMSNorm(self.text_hidden_size, eps=self.eps, with_scale=False) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.Tensor] = None, | |
) -> torch.Tensor: | |
"""Embeds token ids or soft tokens for multimodal content into language model space. | |
Args: | |
input_ids: A torch.LongTensor containing the token ids to embed. Values should be in the range | |
`[vocab_offset, vocab_offset + vocab_size)`. | |
inputs_embeds: A torch.Tensor containing the soft tokens to embed. | |
Returns: | |
A torch.Tensor of embeddings with shape `[batch_size, seq_len, self.config.text_config.hidden_size]`. | |
""" | |
if (input_ids is None) ^ (inputs_embeds is not None): | |
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | |
if inputs_embeds is not None: | |
emb_norm = self.soft_embedding_norm(inputs_embeds) | |
else: | |
hard_emb = self.embedding(input_ids - self.vocab_offset) | |
emb_norm = self.hard_embedding_norm(hard_emb) | |
emb_norm_proj = self.embedding_projection(emb_norm) | |
return self.embedding_post_projection_norm(emb_norm_proj) | |
class Gemma3nModel(Gemma3nPreTrainedModel): | |
_checkpoint_conversion_mapping = {} | |
# we are filtering the logits/labels so we shouldn't divide the loss based on num_items_in_batch | |
accepts_loss_kwargs = False | |
def __init__(self, config: Gemma3nConfig): | |
super().__init__(config) | |
self.vision_tower = AutoModel.from_config(config=config.vision_config) | |
self.vocab_size = config.text_config.vocab_size | |
language_model = AutoModel.from_config(config=config.text_config) | |
self.language_model = language_model | |
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 | |
self.vocab_size_per_layer_input = config.text_config.vocab_size_per_layer_input | |
self.audio_tower = AutoModel.from_config(config.audio_config) | |
self.embed_vision = Gemma3nMultimodalEmbedder(config.vision_config, config.text_config) | |
self.embed_audio = Gemma3nMultimodalEmbedder(config.audio_config, config.text_config) | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.language_model.get_input_embeddings() | |
def set_input_embeddings(self, value): | |
self.language_model.set_input_embeddings(value) | |
def set_decoder(self, decoder): | |
self.language_model = decoder | |
def get_decoder(self): | |
return self.language_model | |
def get_image_features(self, pixel_values: torch.Tensor) -> torch.Tensor: | |
""" | |
Projects the last hidden state from the vision model into language model space. | |
Args: | |
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) | |
The tensors corresponding to the input images. | |
Returns: | |
image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). | |
""" | |
vision_outputs = self.vision_tower( | |
pixel_values=pixel_values, do_pooling=False, return_dict=True | |
).last_hidden_state | |
# Convert from (batch, channels, height, width) to (batch, height * width, channels) where: | |
# height == width and height * width == Gemma3nConfig.vision_soft_tokens_per_image. | |
vision_outputs = vision_outputs.reshape( | |
vision_outputs.shape[0], | |
self.config.vision_config.hidden_size, | |
self.config.vision_soft_tokens_per_image, | |
).permute(0, 2, 1) | |
# Normalize and embed the soft tokens into language model space. | |
vision_outputs *= self.config.vision_config.hidden_size**0.5 | |
return self.embed_vision(inputs_embeds=vision_outputs) | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, # text inputs | |
pixel_values: Optional[torch.FloatTensor] = None, # vision inputs | |
input_features: Optional[torch.FloatTensor] = None, # audio inputs | |
attention_mask: Optional[torch.Tensor] = None, | |
input_features_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
**lm_kwargs, | |
) -> Gemma3nCausalLMOutputWithPast: | |
r""" | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.text_config.vocab_size]`. | |
Example: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, Gemma3nForConditionalGeneration | |
>>> model = Gemma3nForConditionalGeneration.from_pretrained("google/gemma3n2-3b-mix-224") | |
>>> processor = AutoProcessor.from_pretrained("google/gemma3n2-3b-mix-224") | |
>>> prompt = "Where is the cat standing?" | |
>>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg" | |
>>> image = Image.open(requests.get(url, stream=True).raw) | |
>>> inputs = processor(images=image, text=prompt, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(**inputs,) | |
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"Where is the cat standing?\nsnow" | |
``` | |
""" | |
if (input_ids is None) ^ (inputs_embeds is not None): | |
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
if input_ids is not None: | |
inputs_embeds = self.get_input_embeddings()(input_ids) | |
# Prepare per-layer inputs from inputs_ids | |
per_layer_inputs_mask = torch.logical_and(input_ids >= 0, input_ids < self.vocab_size_per_layer_input) | |
per_layer_inputs_tokens = torch.where(per_layer_inputs_mask, input_ids, torch.zeros_like(input_ids)) | |
per_layer_inputs = self.language_model.get_per_layer_inputs(per_layer_inputs_tokens) | |
# Handle vision tokens (>= embed_vision.vocab_offset and < embed_audio.vocab_offset) | |
vision_mask = torch.logical_and( | |
input_ids >= self.embed_vision.vocab_offset, input_ids < self.embed_audio.vocab_offset | |
) | |
dummy_vision_token_id = self.embed_vision.vocab_offset + self.embed_vision.vocab_size - 1 | |
vision_input_ids = torch.where(vision_mask, input_ids, dummy_vision_token_id).to(inputs_embeds.device) | |
vision_embeds = self.embed_vision(input_ids=vision_input_ids) | |
expanded_vision_mask = vision_mask.unsqueeze(-1).expand_as(inputs_embeds) | |
inputs_embeds = torch.where(expanded_vision_mask, vision_embeds, inputs_embeds) | |
# Handle audio tokens (>= embed_audio.vocab_offset) | |
audio_mask = input_ids >= self.embed_audio.vocab_offset | |
dummy_audio_token_id = self.embed_audio.vocab_offset + self.embed_audio.vocab_size - 1 | |
audio_input_ids = torch.where(audio_mask, input_ids, dummy_audio_token_id).to(inputs_embeds.device) | |
audio_embeds = self.embed_audio(input_ids=audio_input_ids) | |
expanded_audio_mask = audio_mask.unsqueeze(-1).expand_as(inputs_embeds) | |
inputs_embeds = torch.where(expanded_audio_mask, audio_embeds, inputs_embeds) | |
else: | |
per_layer_inputs = None | |
# Merge text and images | |
if pixel_values is not None: | |
image_features = self.get_image_features(pixel_values) | |
if input_ids is None: | |
special_image_mask = inputs_embeds == self.get_input_embeddings()( | |
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) | |
) | |
else: | |
special_image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1) | |
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device) | |
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel(): | |
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0] | |
raise ValueError( | |
f"Number of images does not match number of special image tokens in the input text. " | |
f"Got {image_tokens_in_text} image tokens in the text and " | |
f"{image_features.shape[0] * image_features.shape[1]} tokens from image embeddings." | |
) | |
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) | |
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) | |
# Merge text and audio | |
if input_features is not None and input_features_mask is not None: | |
audio_features, audio_mask = self.get_audio_features(input_features, ~input_features_mask) | |
# The Gemma3nProcessor expects all audio will be 30s in length and inserts 188 audio soft tokens into the | |
# text to account for this. However, the audio preprocessing and encoder do not gurarantee they will | |
# produce 188 soft tokens; they will produce at most that many tokens, but they may produce fewer tokens | |
# depending on the length of the longest audio input in the batch. When we encounter this situation, we pad | |
# the audio feature out to 188 soft tokens with the emebedding of the last token in the embed_audio vocab. | |
audio_padding_toks = torch.tensor([[self.vocab_size - 1]], dtype=torch.long, device=audio_features.device) | |
audio_padding_embs = self.embed_audio(input_ids=audio_padding_toks) | |
audio_features = torch.where(audio_mask.unsqueeze(-1), audio_padding_embs, audio_features) | |
audio_batch_size, audio_seq_len, audio_embed_dim = audio_features.shape | |
extra_padding_tokens = self.config.audio_soft_tokens_per_image - audio_seq_len | |
extra_padding_features = audio_padding_embs.expand(audio_batch_size, extra_padding_tokens, audio_embed_dim) | |
audio_features = torch.cat((audio_features, extra_padding_features), dim=1) | |
if input_ids is None: | |
special_audio_mask = inputs_embeds == self.embed_audio( | |
input_ids=torch.tensor(self.config.audio_token_id, dtype=torch.long, device=inputs_embeds.device) | |
) | |
else: | |
special_audio_mask = (input_ids == self.config.audio_token_id).unsqueeze(-1) | |
special_audio_mask = special_audio_mask.expand_as(inputs_embeds).to(inputs_embeds.device) | |
if not is_torchdynamo_compiling() and inputs_embeds[special_audio_mask].numel() != audio_features.numel(): | |
audio_tokens_in_text = (special_audio_mask).sum(dim=1).sum(dim=0)[0] | |
raise ValueError( | |
f"Number of audio input features does not match number of special audio tokens in the input text. " | |
f"Got {audio_tokens_in_text} audio tokens in the text and " | |
f"{audio_features.shape[0] * audio_features.shape[1]} tokens from audio embeddings." | |
) | |
audio_features = audio_features.to(inputs_embeds.device, inputs_embeds.dtype) | |
inputs_embeds = inputs_embeds.masked_scatter(special_audio_mask, audio_features) | |
outputs = self.language_model( | |
input_ids=None, | |
per_layer_inputs=per_layer_inputs, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
cache_position=cache_position, | |
**lm_kwargs, | |
) | |
return Gemma3nModelOutputWithPast( | |
last_hidden_state=outputs.last_hidden_state, | |
past_key_values=outputs.past_key_values if use_cache else None, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
image_hidden_states=image_features if pixel_values is not None else None, | |
audio_hidden_states=audio_features if input_features is not None else None, | |
) | |
def get_audio_features( | |
self, input_features: torch.Tensor, input_features_mask: torch.Tensor | |
) -> tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Projects the last hidden state from the audio encoder into language model space. | |
Args: | |
input_features (`torch.FloatTensor]` of shape `(num_images, seq_length, num_features)`): | |
The tensors corresponding to the input audio. | |
input_features (`torch.FloatTensor]` of shape `(num_images, seq_length)`): | |
The attention mask for the input audio. | |
Returns: | |
audio_features (`torch.Tensor`): Audio feature tensor of shape `(num_images, audio_length, embed_dim)`). | |
""" | |
audio_outputs, audio_mask = self.audio_tower(input_features, input_features_mask) | |
return self.embed_audio(inputs_embeds=audio_outputs), audio_mask | |
class Gemma3nForConditionalGeneration(Gemma3nPreTrainedModel, GenerationMixin): | |
_checkpoint_conversion_mapping = {} | |
_tied_weights_keys = ["lm_head.weight"] | |
base_model_prefix = "model" | |
def __init__(self, config: Gemma3nConfig): | |
super().__init__(config) | |
self.model = Gemma3nModel(config) | |
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) | |
self.post_init() | |
def get_input_embeddings(self): | |
return self.model.get_input_embeddings() | |
def set_input_embeddings(self, value): | |
self.model.set_input_embeddings(value) | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def set_decoder(self, decoder): | |
self.model.set_decoder(decoder) | |
def get_decoder(self): | |
return self.model.get_decoder() | |
def get_image_features(self, pixel_values): | |
return self.model.get_image_features(pixel_values) | |
# Make modules available throught conditional class for BC | |
def language_model(self): | |
return self.model.language_model | |
def vision_tower(self): | |
return self.model.vision_tower | |
def multi_modal_projector(self): | |
raise AttributeError("Use embed_vision instead of multi_modal_projector.") | |
def forward( | |
self, | |
input_ids: Optional[torch.LongTensor] = None, # text inputs | |
pixel_values: Optional[torch.FloatTensor] = None, # vision inputs | |
input_features: Optional[torch.FloatTensor] = None, # audio inputs | |
attention_mask: Optional[torch.Tensor] = None, | |
input_features_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None, | |
token_type_ids: Optional[torch.LongTensor] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
logits_to_keep: Union[int, torch.Tensor] = 0, | |
**lm_kwargs, | |
) -> Gemma3nCausalLMOutputWithPast: | |
r""" | |
input_features (torch.Tensor, *optional*, defaults to None): | |
The audio inputs to be encoded. | |
input_features_mask (torch.Tensor, *optional*, defaults to None): | |
The attention mask for the input audio. | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.text_config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are | |
ignored (masked), the loss is only computed for the tokens with labels in | |
`[0, ..., config.text_config.vocab_size]`. | |
Example: | |
```python | |
>>> from PIL import Image | |
>>> import requests | |
>>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration | |
>>> model = Gemma3ForConditionalGeneration.from_pretrained("google/gemma-3-4b-it") | |
>>> processor = AutoProcessor.from_pretrained("google/gemma-3-4b-it") | |
>>> messages = [ | |
... { | |
... "role": "system", | |
... "content": [ | |
... {"type": "text", "text": "You are a helpful assistant."} | |
... ] | |
... }, | |
... { | |
... "role": "user", "content": [ | |
... {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"}, | |
... {"type": "text", "text": "Where is the cat standing?"}, | |
... ] | |
... }, | |
... ] | |
>>> inputs = processor.apply_chat_template( | |
... messages, | |
... tokenizer=True, | |
... return_dict=True, | |
... return_tensors="pt", | |
... add_generation_prompt=True | |
... ) | |
>>> # Generate | |
>>> generate_ids = model.generate(**inputs) | |
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"user\nYou are a helpful assistant.\n\n\n\n\n\nWhere is the cat standing?\nmodel\nBased on the image, the cat is standing in a snowy area, likely outdoors. It appears to" | |
``` | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
outputs = self.model( | |
input_ids=input_ids, | |
pixel_values=pixel_values, | |
input_features=input_features, | |
attention_mask=attention_mask, | |
input_features_mask=input_features_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
token_type_ids=token_type_ids, | |
cache_position=cache_position, | |
inputs_embeds=inputs_embeds, | |
labels=labels, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
**lm_kwargs, | |
) | |
hidden_states = outputs.last_hidden_state | |
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss | |
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep | |
logits = self.lm_head(hidden_states[:, slice_indices, :]) | |
if (final_logit_softcapping := self.config.get_text_config().final_logit_softcapping) is not None: | |
logits = logits / final_logit_softcapping | |
logits = torch.tanh(logits) | |
logits = logits * final_logit_softcapping | |
loss = None | |
if labels is not None: | |
# Upcast to float if we need to compute the loss to avoid potential precision issues | |
logits = logits.float() | |
shift_logits = logits[..., :-1, :] | |
shift_labels = labels[..., 1:] | |
if attention_mask is not None: | |
# we use the input attention mask to shift the logits and labels, because it is 2D. | |
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft | |
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device) | |
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous() | |
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous() | |
else: | |
shift_logits = shift_logits.contiguous() | |
shift_labels = shift_labels.contiguous() | |
# Flatten the tokens | |
loss_fct = nn.CrossEntropyLoss() | |
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size) | |
flat_labels = shift_labels.view(-1).to(shift_logits.device) | |
loss = loss_fct(flat_logits, flat_labels) | |
return Gemma3nCausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
image_hidden_states=outputs.image_hidden_states, | |
audio_hidden_states=outputs.audio_hidden_states, | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
inputs_embeds=None, | |
cache_position=None, | |
position_ids=None, | |
pixel_values=None, | |
input_features=None, | |
attention_mask=None, | |
input_features_mask=None, | |
token_type_ids=None, | |
use_cache=True, | |
logits_to_keep=None, | |
labels=None, | |
**kwargs, | |
): | |
# Overwritten -- custom `position_ids` and `pixel_values` handling | |
model_inputs = super().prepare_inputs_for_generation( | |
input_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
cache_position=cache_position, | |
use_cache=use_cache, | |
logits_to_keep=logits_to_keep, | |
token_type_ids=token_type_ids, | |
**kwargs, | |
) | |
# If we're in cached decoding stage, multimodal inputs should be None because input ids do not contain special | |
# tokens anymore. Otherwise multimodal inputs should be passed to model. | |
# NOTE: use_cache=False always needs pixel_values, input_features, and input_features_mask | |
if cache_position[0] == 0: | |
model_inputs["pixel_values"] = pixel_values | |
model_inputs["input_features"] = input_features | |
model_inputs["input_features_mask"] = input_features_mask | |
return model_inputs | |
def audio_tower(self): | |
return self.model.audio_tower | |
__all__ = [ | |
"Gemma3nAudioEncoder", | |
"Gemma3nForCausalLM", | |
"Gemma3nForConditionalGeneration", | |
"Gemma3nModel", | |
"Gemma3nPreTrainedModel", | |
"Gemma3nTextModel", | |
] | |