|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import math |
|
from collections.abc import Callable, Sequence |
|
from dataclasses import dataclass |
|
from typing import Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from ...activations import ACT2FN |
|
from ...cache_utils import Cache, DynamicCache, HybridCache |
|
from ...generation import GenerationMixin |
|
from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask |
|
from ...modeling_flash_attention_utils import FlashAttentionKwargs |
|
from ...modeling_layers import GradientCheckpointingLayer |
|
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from ...processing_utils import Unpack |
|
from ...utils import ( |
|
ModelOutput, |
|
auto_docstring, |
|
can_return_tuple, |
|
is_torchdynamo_compiling, |
|
logging, |
|
) |
|
from ...utils.deprecation import deprecate_kwarg |
|
from ..auto import AutoModel |
|
from .configuration_gemma3n import Gemma3nAudioConfig, Gemma3nConfig, Gemma3nTextConfig, Gemma3nVisionConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
@auto_docstring( |
|
custom_intro=\"\"\" |
|
Base class for Gemma3n outputs, with hidden states and attentions. |
|
\"\"\" |
|
) |
|
class Gemma3nModelOutputWithPast(BaseModelOutputWithPast): |
|
r\"\"\" |
|
past_key_values (\`tuple(tuple(torch.FloatTensor))\`, *optional*, returned when \`use_cache=True\` is passed or when \`config.use_cache=True\`): |
|
Tuple of \`tuple(torch.FloatTensor)\` of length \`config.n_layers\`, with each tuple having 2 tensors of shape |
|
\`(batch_size, num_heads, sequence_length, embed_size_per_head)\`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
\`past_key_values\` input) to speed up sequential decoding. |
|
image_hidden_states (\`torch.FloatTensor\`, *optional*): |
|
A \`torch.FloatTensor\` of size \`(batch_size, num_images, sequence_length, hidden_size)\`. |
|
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. |
|
audio_hidden_states (\`torch.FloatTensor\`, *optional*): |
|
A \`torch.FloatTensor\` of size \`(batch_size, num_images, sequence_length, hidden_size)\`. |
|
audio_hidden_states of the model produced by the audio encoder and after projecting the last hidden state. |
|
\"\"\" |
|
|
|
image_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
audio_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
|
|
@dataclass |
|
@auto_docstring( |
|
custom_intro=\"\"\" |
|
Base class for Gemma3n causal language model (or autoregressive) outputs. |
|
\"\"\" |
|
) |
|
class Gemma3nCausalLMOutputWithPast(ModelOutput): |
|
r\"\"\" |
|
loss (\`torch.FloatTensor\` of shape \`(1,)\`, *optional*, returned when \`labels\` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (\`torch.FloatTensor\` of shape \`(batch_size, sequence_length, config.text_config.vocab_size)\`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (\`tuple(tuple(torch.FloatTensor))\`, *optional*, returned when \`use_cache=True\` is passed or when \`config.use_cache=True\`): |
|
Tuple of \`tuple(torch.FloatTensor)\` of length \`config.n_layers\`, with each tuple having 2 tensors of shape |
|
\`(batch_size, num_heads, sequence_length, embed_size_per_head)\`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
\`past_key_values\` input) to speed up sequential decoding. |
|
image_hidden_states (\`torch.FloatTensor\`, *optional*): |
|
A \`torch.FloatTensor\` of size \`(batch_size, num_images, sequence_length, hidden_size)\`. |
|
image_hidden_states of the model produced by the vision encoder after projecting last hidden state. |
|
audio_hidden_states (\`torch.FloatTensor\`, *optional*): |
|
A \`torch.FloatTensor\` of size \`(batch_size, num_images, sequence_length, hidden_size)\`. |
|
audio_hidden_states of the model produced by the audio encoder and after projecting the last hidden state. |
|
\"\"\" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None |
|
hidden_states: Optional[tuple[torch.FloatTensor]] = None |
|
attentions: Optional[tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
audio_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
|
|
class Gemma3nRMSNorm(nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6, with_scale: bool = True): |
|
super().__init__() |
|
self.eps = eps |
|
self.with_scale = with_scale |
|
|
|
if self.with_scale: |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
else: |
|
self.register_buffer(\"weight\", torch.tensor(1.0), persistent=False) |
|
|
|
def _norm(self, x): |
|
return x / torch.sqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
# Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16) |
|
# See https://github.com/huggingface/transformers/pull/29402 |
|
output = self._norm(x.float()) * self.weight.float() |
|
return output.type_as(x) |
|
|
|
def extra_repr(self): |
|
return f\"{tuple(self.weight.shape)}, eps={self.eps}\" |
|
|
|
|
|
# ==== Audio Encoder ==== |
|
|
|
|
|
class Gemma3nAudioRelativePositionEmbedding(nn.Module): |
|
def __init__(self, config: Gemma3nAudioConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.num_heads = self.config.conf_num_attention_heads |
|
self.channels = self.config.hidden_size |
|
self.head_dim = self.channels // self.num_heads |
|
self.max_backward = max(0, self.config.conf_attention_context_left - 1) |
|
self.max_forward = self.config.conf_attention_context_right |
|
|
|
self.pos_proj = nn.Linear(self.channels, self.num_heads * self.head_dim, bias=False) |
|
|
|
min_timescale = 1.0 |
|
max_timescale = 1.0e4 |
|
num_timescales = self.channels // 2 |
|
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / max(num_timescales - 1, 1) |
|
inv_timescales = min_timescale * torch.exp(torch.arange(num_timescales) * -log_timescale_increment) |
|
self.register_buffer( |
|
\"inv_timescales\", |
|
inv_timescales.float().unsqueeze(0).unsqueeze(0), |
|
persistent=False, |
|
) |
|
|
|
def _get_timing_signal_1d_pos(self, position: torch.Tensor, dtype: torch.dtype) -> torch.Tensor: |
|
position = position.float().unsqueeze(-1) |
|
scaled_time = position * self.inv_timescales.to(device=position.device, dtype=torch.float32) |
|
timing_signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=-1) |
|
return timing_signal.type(dtype) |
|
|
|
def _relative_shift( |
|
self, |
|
term_bd_before_shift: torch.Tensor, |
|
batch_size: int, |
|
num_heads: int, |
|
num_query_blocks: int, |
|
query_block_size: int, |
|
key_context_size: int, |
|
max_span_plus_1: int, |
|
) -> torch.Tensor: |
|
\"\"\"Performs the relative shift. |
|
|
|
Args: |
|
term_bd_before_shift: Tensor of shape [B, N, U, W, F_span]. batch_size |
|
(B), num_heads (N), num_query_blocks (U), query_block_size (W), |
|
key_context_size (C = W+L+R), max_span_plus_1 (F_span = L+R+1). |
|
|
|
Returns: |
|
Tensor of shape [B, N, U, W, C]. |
|
\"\"\" |
|
# term_bd_before_shift shape: [B, N, U, W, F_span] |
|
# Target shape after shift: [B, N, U, W, C] |
|
|
|
# Padding amount for the last dimension (F_span) to become (C + 1) |
|
# C = key_context_size |
|
# F_span = max_span_plus_1 |
|
pad_amount_last_dim = (key_context_size + 1) - max_span_plus_1 |
|
|
|
# PyTorch F.pad expects (pad_left, pad_right, pad_top, pad_bottom ...) |
|
# We only pad the last dimension on the right. |
|
padding_tuple = (0, pad_amount_last_dim) |
|
|
|
term_bd_padded = nn.functional.pad(term_bd_before_shift, padding_tuple) |
|
# Shape after pad: [B, N, U, W, C+1] |
|
|
|
# Reshape for slicing (emulating JAX\'s behavior) |
|
# [B, N, U, W * (C+1)] |
|
term_bd_reshaped = term_bd_padded.reshape( |
|
( |
|
batch_size, |
|
num_heads, |
|
num_query_blocks, |
|
query_block_size * (key_context_size + 1), |
|
) |
|
) |
|
|
|
# Slice to effective [B, N, U, W * C] |
|
term_bd_sliced = term_bd_reshaped[:, :, :, : query_block_size * key_context_size] |
|
|
|
# Reshape back to [B, N, U, W, C] |
|
term_bd_shifted = term_bd_sliced.reshape( |
|
( |
|
batch_size, |
|
num_heads, |
|
num_query_blocks, |
|
query_block_size, |
|
key_context_size, |
|
) |
|
) |
|
return term_bd_shifted |
|
|
|
def forward(self, queries: torch.Tensor, keys: torch.Tensor) -> torch.Tensor: |
|
# queries: [B, U, W, N, H] (batch, num_query_blocks, query_block_size, num_heads, head_dim) |
|
# keys: [B, U, C, N, H] (batch, num_query_blocks, key_context_size, num_heads, head_dim) |
|
# C = W + L + R (key_context_size) |
|
# F_span = L + R + 1 (max_span + 1) |
|
|
|
batch_size, num_query_blocks, query_block_size, num_heads, head_dim = queries.shape |
|
_, _, key_context_size, _, _ = keys.shape |
|
|
|
# Relative positions for sinusoidal embeddings: [L, L-1, ..., -R] |
|
# Length is L+R+1 = self.max_span + 1 |
|
pos_indices = torch.arange(self.max_backward, -self.max_forward - 1, -1, device=queries.device).unsqueeze( |
|
0 |
|
) # Shape [1, F_span] |
|
|
|
max_span_plus_1 = pos_indices.shape[1] # F_span |
|
|
|
sin_emb_timing_signal = self._get_timing_signal_1d_pos( |
|
pos_indices, dtype=queries.dtype |
|
) # Shape [1, F_span, self.channels] |
|
|
|
# Project sinusoidal embeddings: [1, F_span, self.channels] -> [1, F_span, N*H] |
|
projected_sin_emb = self.pos_proj(sin_emb_timing_signal) |
|
# Reshape to [1, F_span, N, H] then squeeze to [F_span, N, H] |
|
sin_emb = projected_sin_emb.reshape(1, max_span_plus_1, self.num_heads, self.head_dim).squeeze( |
|
0 |
|
) # Shape [F, N, H] |
|
|
|
# term_ac: Query-Key content interaction |
|
# queries: [B, U, W, N, H] -> permute to [B, N, U, W, H] for matmul |
|
# keys: [B, U, C, N, H] -> permute to [B, N, U, H, C] for matmul |
|
queries_p = queries.permute(0, 3, 1, 2, 4) # [B, N, U, W, H] |
|
keys_p_t = keys.permute(0, 3, 1, 4, 2) # [B, N, U, H, C] |
|
term_ac = torch.matmul(queries_p, keys_p_t) # [B, N, U, W, C] |
|
|
|
# term_bd: Query-Position interaction |
|
# Original einsum: term_bd_unshifed = torch.einsum(\'buwnh,fnh->bnuwf\', queries, sin_emb) |
|
# queries shape: [B, U, W, N, H] |
|
# sin_emb shape: [F, N, H] |
|
# Target output shape: [B, N, U, W, F] |
|
|
|
# Permute queries to [B, N, U, W, H] for easier broadcasting with sin_emb |
|
q_permuted = queries.permute(0, 3, 1, 2, 4) |
|
|
|
# Permute sin_emb to [N, H, F] to prepare for matmul |
|
# sin_emb original is [F, N, H] |
|
s_permuted = sin_emb.permute(1, 2, 0) # Shape: [N, H, F] |
|
|
|
# Reshape queries for matmul: [B, N, U*W, H] |
|
q_reshaped = q_permuted.reshape(batch_size, num_heads, num_query_blocks * query_block_size, head_dim) |
|
|
|
# Perform matmul: [B, N, U*W, H] @ [N, H, F] |
|
# s_permuted ([N, H, F]) will be broadcast to [B, N, H, F] |
|
# Result: [B, N, U*W, F] |
|
term_bd_unshifed_matmul = torch.matmul(q_reshaped, s_permuted) |
|
|
|
# Reshape to target [B, N, U, W, F] |
|
term_bd_unshifed = term_bd_unshifed_matmul.reshape( |
|
batch_size, |
|
num_heads, |
|
num_query_blocks, |
|
query_block_size, |
|
max_span_plus_1, |
|
) |
|
|
|
# Apply relative shift to term_bd_unshifed |
|
term_bd_shifted = self._relative_shift( |
|
term_bd_unshifed, |
|
batch_size, |
|
num_heads, |
|
num_query_blocks, |
|
query_block_size, |
|
key_context_size, |
|
max_span_plus_1, |
|
) # Shape [B, N, U, W, C] |
|
|
|
return term_ac + term_bd_shifted |
|
|
|
|
|
class Gemma3nAudioAttention(nn.Module): |
|
def __init__(self, config: Gemma3nAudioConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.num_heads = self.config.conf_num_attention_heads |
|
self.hidden_size = self.config.hidden_size |
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
|
self.chunk_size = self.config.conf_attention_chunk_size |
|
self.max_future_horizon = self.config.conf_attention_context_right |
|
self.max_past_horizon = max(0, self.config.conf_attention_context_left - 1) |
|
self.attention_logits_soft_cap = self.config.conf_attention_logit_cap |
|
self.context_size = self.chunk_size + self.max_past_horizon + self.max_future_horizon |
|
|
|
self.relative_position_embedding = Gemma3nAudioRelativePositionEmbedding(config) |
|
self.per_dim_scale = nn.Parameter(torch.zeros((self.head_dim,))) |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) |
|
|
|
q_scale = self.head_dim**-0.5 |
|
r_softplus_0 = 1.0 / torch.nn.functional.softplus(torch.tensor(0.0)) |
|
self.register_buffer(\"q_scale\", (q_scale * r_softplus_0).clone().detach(), persistent=False) |
|
|
|
lower_causal_mask = torch.tril( |
|
torch.ones((self.context_size, self.chunk_size), dtype=torch.bool), |
|
diagonal=0, |
|
).T |
|
upper_causal_mask = torch.tril( |
|
torch.ones((self.chunk_size, self.context_size), dtype=torch.bool), |
|
diagonal=self.max_past_horizon + self.max_future_horizon, |
|
) |
|
local_causal_valid_mask = torch.ones((self.chunk_size, self.context_size), dtype=torch.bool) |
|
local_causal_valid_mask = local_causal_valid_mask * lower_causal_mask * upper_causal_mask |
|
self.register_buffer(\"local_causal_valid_mask\", local_causal_valid_mask, persistent=False) |
|
|
|
self.register_buffer( |
|
\"softcap\", |
|
torch.tensor(self.attention_logits_soft_cap).float(), |
|
persistent=False, |
|
) |
|
|
|
def _pad_dim1(self, x: torch.Tensor, pad_left: int, pad_right: int) -> torch.Tensor: |
|
batch, _, *tail_shape = x.shape |
|
left = x.new_zeros((batch, pad_left, *tail_shape)) |
|
right = x.new_zeros((batch, pad_right, *tail_shape)) |
|
x = torch.cat([left, x, right], dim=1) |
|
return x |
|
|
|
def _convert_to_block(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
\"\"\"Turns a sequence to non overlapping blocks. |
|
|
|
Args: |
|
hidden_states: a tensor of [batch, time, ...]. |
|
|
|
Returns: |
|
A tensor of [batch, num_blocks, block_size, ...], with necessary |
|
paddings, |
|
where output[:, i, ...] are x[:, i*block_size:(i+1)*block_size, ...]. |
|
\"\"\" |
|
shape = hidden_states.shape |
|
b, t = shape[:2] |
|
num_blocks = (t + self.chunk_size - 1) // self.chunk_size |
|
|
|
if (padding_len := num_blocks * self.chunk_size - t) > 0: |
|
hidden_states = self._pad_dim1(hidden_states, 0, padding_len) |
|
|
|
permute_dims = (b, num_blocks, self.chunk_size) + shape[2:] |
|
hidden_states = hidden_states.reshape(permute_dims).contiguous() |
|
return hidden_states |
|
|
|
def _extract_block_context(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
\"\"\"Extracts temporal context for every block. |
|
|
|
Args: |
|
hidden_states: a tensor of [batch, time, ...]. |
|
|
|
Returns: |
|
A tensor of [batch, num_blocks, context_size, ...], with necessary |
|
paddings, |
|
where context_size = block_size + left_context + right_context, |
|
and output[:, i, ...] are x[:, start-left_context:end+right_context, |
|
...], |
|
start = i * block_size, end = (i + 1) * block_size. |
|
\"\"\" |
|
pad_left = self.max_past_horizon |
|
# The JAX equivalent padding for signal.frame with pad_mode=\'valid\' is |
|
# (left_context, right_context + block_size - 1) on the time dimension. |
|
# PyTorch\'s _pad_dim1 applies padding symmetrically if only one value is given, |
|
# or (pad_dim_start, pad_dim_end) if two are given. |
|
# Our _pad_dim1(x, pad_left, pad_right) pads dim -2 (time for [B,T,N,H]) |
|
# or dim 1 (time for [B,T]). |
|
# The current pad_right calculation matches the JAX effective padding. |
|
pad_right = self.max_future_horizon + self.chunk_size - 1 |
|
hidden_states = self._pad_dim1(hidden_states, pad_left, pad_right) |
|
|
|
frame_len = self.context_size |
|
frame_step = self.chunk_size |
|
|
|
# Directly use unfold without the subframe_factor logic |
|
# x.unfold(dimension, size, step) |
|
# dimension=1 (time dimension, assuming x is [B, T_padded, ...]) |
|
# size=frame_len (context_size) |
|
# step=frame_step (chunk_size) |
|
x_unfolded = hidden_states.unfold(dimension=1, size=frame_len, step=frame_step) |
|
|
|
# If x was [B, T_padded], x_unfolded is [B, num_blocks, frame_len] |
|
# If x was [B, T_padded, N, H], x_unfolded is [B, num_blocks, N, H, frame_len] |
|
# We want to match JAX\'s typical output for such operations which might be |
|
# [B, num_blocks, frame_len, N, H] if N, H are present. |
|
# The relative_position_embedding expects keys as [B, U, C, N, H]. |
|
# If x_unfolded is [B, U, N, H, C(frame_len)], we need to move C. |
|
if hidden_states.ndim > 2 and x_unfolded.ndim > 3: # Check if inner dimensions (like N, H) exist |
|
# Current shape after unfold for [B, T_pad, N, H] is [B, U, N, H, C] |
|
# Target shape for keys in RPE: [B, U, C, N, H] |
|
x_unfolded = torch.movedim(x_unfolded, source=-1, destination=2) |
|
|
|
return x_unfolded.contiguous() |
|
|
|
def forward(self, hidden_states: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor: |
|
# sl.Dense uses jax.numpy.einsum(\"...a,abcd->...bcd\") and jax.numpy.select() |
|
qkv_shape = (*hidden_states.shape[:-1], self.num_heads, self.head_dim) |
|
query_states = self.q_proj(hidden_states).reshape(qkv_shape).contiguous() |
|
key_states = self.k_proj(hidden_states).reshape(qkv_shape).contiguous() |
|
value_states = self.v_proj(hidden_states).reshape(qkv_shape).contiguous() |
|
|
|
per_dim_scale_sp = torch.nn.functional.softplus(self.per_dim_scale) |
|
|
|
broadcast_shape = (1, 1, 1, self.head_dim) |
|
per_dim_scale_sp_broadcast = per_dim_scale_sp.view(broadcast_shape) |
|
query_states = query_states * self.q_scale * per_dim_scale_sp_broadcast |
|
|
|
batch_size, q_time = query_states.shape[:2] |
|
|
|
query_blocks = self._convert_to_block(query_states) |
|
key_blocks = self._extract_block_context(key_states) |
|
value_blocks = self._extract_block_context(value_states) |
|
num_query_blocks = query_blocks.shape[1] |
|
|
|
# 1. Create a mask indicating originally valid positions. |
|
original_valid_mask = ~mask # True for valid, False for padded |
|
|
|
# 2. Extract blocks from this validity mask. |
|
extracted_valid_mask_blocks = self._extract_block_context(original_valid_mask) |
|
|
|
# If subframe_factor was used in _extract_block_context for a [B, T] input mask, |
|
# the shape might be [B, U, C/SF, SF]. Reshape to [B, U, C]. |
|
# batch_size and num_query_blocks are known from query_blocks. |
|
# self.context_size is C. |
|
if ( |
|
extracted_valid_mask_blocks.ndim == 4 |
|
and extracted_valid_mask_blocks.shape[2] * extracted_valid_mask_blocks.shape[3] == self.context_size |
|
): |
|
extracted_valid_mask_blocks = extracted_valid_mask_blocks.reshape( |
|
batch_size, num_query_blocks, self.context_size |
|
) |
|
# After potential reshape, ensure it\'s [B, U, C] if it was from a [B,T] mask. |
|
# This assertion might be too strict if _extract_block_context handles higher-rank inputs differently, |
|
# but for the mask case, this should hold. |
|
if extracted_valid_mask_blocks.shape != ( |
|
batch_size, |
|
num_query_blocks, |
|
self.context_size, |
|
): |
|
raise ValueError( |
|
\"Shape of extracted_valid_mask_blocks\" |
|
f\" {extracted_valid_mask_blocks.shape} is not ({batch_size},\" |
|
f\" {num_query_blocks}, {self.context_size}) after potential reshape.\" |
|
) |
|
|
|
# 3. Expand dimensions for broadcasting with logits and causal mask. |
|
# Target shape for broadcasting with logits [B,N,U,W,C] |
|
# extracted_valid_mask_blocks to [B, 1, U, 1, C] |
|
condition_from_input_validity = extracted_valid_mask_blocks.unsqueeze(1).unsqueeze(-2) |
|
|
|
# self.local_causal_valid_mask is [W, C], True where allowed by local window. |
|
# Expand to [1, 1, 1, W, C] |
|
condition_from_causality = self.local_causal_valid_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0) |
|
|
|
# 4. Combine the two conditions. |
|
# final_condition will be True where a key is *both* originally valid *and* causally accessible. |
|
# Broadcasts to [B, 1, U, W, C] |
|
final_condition_for_where = torch.logical_and( |
|
condition_from_input_validity, |
|
condition_from_causality.to(condition_from_input_validity.device), # Ensure same device |
|
) |
|
|
|
# Embed queries and keys |
|
logits = self.relative_position_embedding(query_blocks, key_blocks) |
|
|
|
# Apply attention logit softcap |
|
# Ensure softcap is on the same device as logits |
|
softcap_val = self.softcap.to(logits.device) |
|
logits = logits / softcap_val |
|
logits = torch.tanh(logits) |
|
logits = logits * softcap_val |
|
|
|
# Apply the combined mask. |
|
# final_condition_for_where will broadcast with logits [B,N,U,W,C] |
|
logits = torch.where(final_condition_for_where, logits, torch.finfo(logits.dtype).min) |
|
probabilities = torch.nn.functional.softmax(logits, dim=-1, dtype=torch.float32).to(dtype=value_blocks.dtype) |
|
|
|
# context_vectors is adapted from jax.numpy.einsum(\"BNuwc,BucNH->BuwNH\", ...) |
|
b_dim, n_dim, u_dim, w_dim, c_dim = probabilities.shape |
|
h_dim = value_blocks.shape[-1] |
|
prob_bun = probabilities.permute(0, 2, 1, 3, 4).reshape(-1, w_dim, c_dim) |
|
v_bun = value_blocks.permute(0, 1, 3, 2, 4).reshape(-1, c_dim, h_dim) |
|
result_bmm = torch.bmm(prob_bun, v_bun) |
|
context_vectors = result_bmm.reshape(b_dim, u_dim, n_dim, w_dim, h_dim).permute(0, 1, 3, 2, 4) |
|
context_vectors = context_vectors.reshape( |
|
( |
|
batch_size, |
|
num_query_blocks * self.chunk_size, |
|
self.num_heads, |
|
self.head_dim, |
|
) |
|
) |
|
context_vectors = context_vectors[:, :q_time] |
|
|
|
return context_vectors |
|
|
|
|
|
class Gemma3nAudioCumulativeGroupNorm(nn.Module): |
|
\"\"\"Applies Group Normalization cumulatively over the time dimension. |
|
|
|
This layer normalizes the input by calculating the mean and variance |
|
cumulatively over the time dimension (dim 1). The statistics are computed |
|
over all feature dimensions (specified by \`feature_dims\` and \`num_channels\`) |
|
for elements marked as valid by the optional \`mask\`. |
|
|
|
If a \`mask\` is provided (True for valid, False for invalid/padded), |
|
invalid time steps do not contribute to the statistics calculation, and |
|
their corresponding output values are zeroed out. |
|
|
|
Scale and bias, if enabled, are applied per-channel (last dimension). |
|
This behavior is similar to JAX\'s \`GroupNormalization\` with \`num_groups=1\` |
|
and \`cumulative=True\`. |
|
\"\"\" |
|
|
|
def __init__( |
|
self, |
|
num_channels: int, # Number of channels (size of the last dimension) |
|
feature_dims: Sequence[int], # Sizes of non-channel feature dimensions, e.g., (H, W) for input [B,T,H,W,C] |
|
eps: float = 1e-3, |
|
): |
|
super().__init__() |
|
self.num_channels = num_channels |
|
self.feature_dims = tuple(feature_dims) |
|
self.eps = eps |
|
|
|
# Scale parameter depends only on the channel dimension |
|
self.weight = nn.Parameter(torch.ones(num_channels)) |
|
|
|
# Axes for normalization: all dimensions except Batch (0) and Time (1). |
|
# For input [B, T, *feature_dims, C], these are dims from 2 onwards. |
|
self.reduction_axes = tuple(range(2, 2 + len(self.feature_dims) + 1)) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
\"\"\"Applies cumulative group norm, optionally using a mask. |
|
|
|
Args: |
|
hidden_states: Input tensor, shape [B, T, *feature_dims, C]. |
|
|
|
Returns: |
|
Normalized tensor with the same shape as x. |
|
\"\"\" |
|
expected_input_suffix = self.feature_dims + (self.num_channels,) |
|
if hidden_states.shape[2:] != expected_input_suffix: |
|
raise ValueError( |
|
f\"Input tensor shape suffix {hidden_states.shape[2:]} does not match expected\" |
|
f\" suffix (feature_dims + num_channels) {expected_input_suffix}\" |
|
) |
|
|
|
input_dtype = hidden_states.dtype |
|
# Calculations are performed in float32 for numerical stability. |
|
calc_dtype = torch.float32 |
|
x_calc = hidden_states.to(calc_dtype) |
|
|
|
# Prepare a broadcastable mask (\`mask_calc\`). |
|
# If no mask is provided, treat all elements as valid |
|
# (mask_calc is all ones). |
|
# Otherwise, expand the [B, T] mask to [B, T, 1, ..., 1] for broadcasting. |
|
mask_calc = torch.ones_like(x_calc, dtype=calc_dtype) |
|
|
|
# Cumulative Statistics Calculation |
|
# 1. Sum of values over reduction axes at each time step. |
|
sum_values_at_t = torch.sum(x_calc, dim=self.reduction_axes, keepdim=True) |
|
# 2. Cumulative sum of values over time. |
|
cum_sum_values = torch.cumsum(sum_values_at_t, dim=1) |
|
|
|
# 3. Count of valid elements in the normalization group at each time step. |
|
# (A \"group\" here consists of all features at a given Batch, Time). |
|
elements_in_group_at_t = torch.sum(mask_calc, dim=self.reduction_axes, keepdim=True) |
|
# 4. Cumulative count of valid elements over time. |
|
cum_count_elements = torch.cumsum(elements_in_group_at_t, dim=1) |
|
# Avoid division by zero if all preceding elements were masked. |
|
safe_cum_count_elements = torch.clamp(cum_count_elements, min=1.0) |
|
|
|
# 5. Cumulative mean. |
|
cum_mean = cum_sum_values / safe_cum_count_elements |
|
|
|
# 6. Sum of squared differences from the cumulative mean. |
|
# Only sum for valid elements: (x_calc - cum_mean)^2 * mask_calc. |
|
# Using x_calc here for the difference, as cum_mean already accounts for masking. |
|
squared_diff_from_mean = (x_calc - cum_mean).pow(2) |
|
sum_sq_diff_at_t = torch.sum(squared_diff_from_mean, dim=self.reduction_axes, keepdim=True) |
|
|
|
# 7. Cumulative sum of squared differences over time. |
|
cum_sum_sq_diff = torch.cumsum(sum_sq_diff_at_t, dim=1) |
|
|
|
# 8. Cumulative variance. |
|
cum_variance = cum_sum_sq_diff / safe_cum_count_elements |
|
|
|
# Normalize the input using the calculated cumulative statistics: |
|
# (x - E[x]) / sqrt(Var[x] + eps) |
|
normalized_x = (x_calc - cum_mean) * torch.rsqrt(cum_variance + self.eps) |
|
|
|
# Apply affine transformation (scale and bias) if enabled. |
|
# Scale and bias are applied per-channel (last dimension). |
|
scale = self.weight.to(calc_dtype) |
|
# Reshape for broadcasting: [C] -> [1, ..., 1, C] |
|
scale_view_shape = [1] * (hidden_states.dim() - 1) + [self.num_channels] |
|
normalized_x = normalized_x * scale.view(scale_view_shape) |
|
|
|
# Zero out outputs for time steps that were originally masked (where mask_calc is 0). |
|
# This ensures padded/invalid positions in the input result in zero output. |
|
final_output = normalized_x * mask_calc |
|
|
|
return final_output.to(input_dtype) |
|
|
|
|
|
class Gemma3nAudioSSCPConvBlock(nn.Module): |
|
\"\"\"A single convolution block for the SubSampleConvProjection. |
|
|
|
This block consists of a 2D convolution, followed by CumulativeGroupNorm, |
|
and a ReLU activation. It handles manual padding for the convolution. |
|
\"\"\" |
|
|
|
def __init__( |
|
self, |
|
config: Gemma3nAudioConfig, |
|
idx: int, |
|
input_freq_dim: int, # Changed from input_spatial_dim |
|
manual_padding: tuple[int, int, int, int] = (0, 0, 0, 0), |
|
): |
|
super().__init__() |
|
self.config = config |
|
self.manual_padding = manual_padding |
|
|
|
# in_channels is 1 for the first block, or C_out from previous block\'s conv |
|
in_channels = 1 if idx == 0 else self.config.sscp_conv_channel_size[idx - 1] |
|
out_channels = self.config.sscp_conv_channel_size[idx] |
|
kernel_h, kernel_w = self.config.sscp_conv_kernel_size[idx] |
|
stride_h, stride_w = self.config.sscp_conv_stride_size[idx] |
|
|
|
self.conv = nn.Conv2d( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
kernel_size=( |
|
kernel_h, |
|
kernel_w, |
|
), # Kernel (kH, kW) operates on (Time, Freq_dim) |
|
stride=(stride_h, stride_w), |
|
padding=(0, 0), # Manual padding is used |
|
bias=False, |
|
) |
|
|
|
# Calculate output frequency dimension (f_out_conv) after this convolution. |
|
# input_freq_dim is the unpadded width (feature dimension). |
|
# self.manual_padding is (pad_F_left, pad_F_right, pad_T_top, pad_T_bottom) |
|
f_in_padded = input_freq_dim + self.manual_padding[0] + self.manual_padding[1] |
|
f_out_conv = (f_in_padded - kernel_w) // stride_w + 1 |
|
|
|
self.norm = Gemma3nAudioCumulativeGroupNorm( |
|
num_channels=out_channels, # Channels of the conv output |
|
feature_dims=(f_out_conv,), # The frequency dimension size after conv |
|
eps=self.config.sscp_conv_group_norm_eps, |
|
) |
|
|
|
self.activation = nn.ReLU() |
|
|
|
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor: |
|
# Input audio_encodings is [B, C_in, T_in, F_in] (e.g., C_in=1) |
|
# manual_padding is (pad_F_left, pad_F_right, pad_T_top, pad_T_bottom) |
|
# F.pad applies to last two dims: F_in then T_in |
|
audio_encodings_padded = F.pad(audio_encodings, self.manual_padding, mode=\"constant\", value=0.0) |
|
# Expected padded shape for F_in, k_w=3, pad_F=(1,1) -> F_padded = F_in+2 |
|
# Expected padded shape for T_in, k_h=3, pad_T=(0,2) -> T_padded = T_in+2 |
|
audio_encodings_conv = self.conv(audio_encodings_padded) |
|
# Expected conv output shape: [B, C_out, T_out, F_out] |
|
# Input to norm is [B, T_out, F_out, C_out] |
|
x_for_norm = audio_encodings_conv.permute(0, 2, 3, 1).contiguous() |
|
x_normed = self.norm(x_for_norm) |
|
# Output of norm is [B, T_out, F_out, C_out], permute back to [B, C_out, T_out, F_out] |
|
audio_encodings_normed = x_normed.permute(0, 3, 1, 2).contiguous() |
|
return self.activation(audio_encodings_normed) |
|
|
|
|
|
class Gemma3nAudioSubSampleConvProjection(nn.Module): |
|
def __init__(self, config: Gemma3nAudioConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
current_f_for_block_input = config.input_feat_size # Start with original feature dim |
|
calculated_block_padding = [] |
|
calculated_f_out_dims = [] # Tracking frequency dimension output sizes |
|
|
|
for i in range(2): # Assuming 2 conv layers as per sscp_conv_... arrays |
|
kernel_h, kernel_w = config.sscp_conv_kernel_size[i] |
|
stride_h, stride_w = config.sscp_conv_stride_size[i] |
|
|
|
# Padding for Time (Height for Conv2d) - REVERSE_CAUSAL like |
|
# JAX \'reverse_causal\' padding is (0, kernel_size - 1) |
|
pad_t_top = 0 |
|
pad_t_bottom = kernel_h - 1 |
|
|
|
# Frequency Padding (Width for Conv2d) |
|
# Based on JAX effective padding (1,1) for F_in=10, K_w=3, S_w=2 |
|
# and the successful test configuration. |
|
# If kernel/stride/input_freq for frequency changes, this might need re-evaluation |
|
# to match generic JAX \'SAME\' behavior if it differs. |
|
pad_f_left = 1 |
|
pad_f_right = 1 |
|
|
|
manual_padding_tuple = ( |
|
pad_f_left, |
|
pad_f_right, |
|
pad_t_top, |
|
pad_t_bottom, |
|
) |
|
calculated_block_padding.append(manual_padding_tuple) |
|
|
|
# Calculate output frequency dimension after this convolution |
|
# This uses the actual padding applied and kernel/stride. |
|
f_in_padded = current_f_for_block_input + pad_f_left + pad_f_right |
|
f_out_after_conv = (f_in_padded - kernel_w) // stride_w + 1 # Assuming dilation_w = 1 |
|
calculated_f_out_dims.append(f_out_after_conv) |
|
current_f_for_block_input = f_out_after_conv |
|
|
|
self.conv_0 = Gemma3nAudioSSCPConvBlock( |
|
idx=0, |
|
input_freq_dim=config.input_feat_size, # Pass original feature dim |
|
config=config, |
|
manual_padding=calculated_block_padding[0], |
|
) |
|
self.conv_1 = Gemma3nAudioSSCPConvBlock( |
|
idx=1, |
|
input_freq_dim=calculated_f_out_dims[0], # Output freq dim from conv_0 |
|
config=config, |
|
manual_padding=calculated_block_padding[1], |
|
) |
|
final_c_out = config.sscp_conv_channel_size[-1] |
|
final_f_out = calculated_f_out_dims[-1] # Final frequency dimension |
|
self.input_proj_in_features = final_c_out * final_f_out |
|
self.input_proj_linear = nn.Linear(self.input_proj_in_features, self.config.hidden_size, bias=False) |
|
|
|
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor: |
|
# audio_encodings is [B, T, F_in] |
|
# Reshape to [B, 1, T, F_in] (Batch, Channels=1, Height=Time, Width=F_in) |
|
audio_encodings_reshaped = audio_encodings.unsqueeze(1) |
|
x = self.conv_0(audio_encodings_reshaped) |
|
x = self.conv_1(x) |
|
# x from conv_1 is [B, C_out_1, T_out_1, F_out_1] |
|
b, c_out, t_out, f_out = x.shape |
|
# Permute to [B, T_out_1, F_out_1, C_out_1] then flatten F_out_1 and C_out_1 |
|
x_permuted = x.permute(0, 2, 3, 1).contiguous() |
|
output_flattened = x_permuted.view(b, t_out, f_out * c_out) |
|
output = self.input_proj_linear(output_flattened) |
|
return output |
|
|
|
|
|
class Gemma3nAudioConformerAttention(nn.Module): |
|
def __init__(self, config: Gemma3nAudioConfig): |
|
super().__init__() |
|
self.config = config |
|
self.post_in_features = self.config.hidden_size |
|
self.register_buffer(\"gradient_clipping\", torch.tensor(self.config.gradient_clipping), persistent=False) |
|
self.pre_attn_norm = Gemma3nRMSNorm(self.config.hidden_size) |
|
self.attn = Gemma3nAudioAttention(config) |
|
self.post = nn.Linear(self.post_in_features, self.config.hidden_size, bias=False) |
|
self.post_norm = Gemma3nRMSNorm(self.config.hidden_size) |
|
|
|
def forward(self, audio_encodings: torch.Tensor, audio_mel_mask: torch.BoolTensor) -> torch.Tensor: |
|
audio_encodings_input_to_attn = audio_encodings |
|
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) |
|
audio_encodings_norm = self.pre_attn_norm(audio_encodings) |
|
# Output of self.attn is [B, T, NumHeads, HeadDim] |
|
audio_encodings_attn_out = self.attn(audio_encodings_norm, audio_mel_mask) |
|
|
|
# Reshape from [B, T, NumHeads, HeadDim] to [B, T, NumHeads * HeadDim] |
|
# NumHeads * HeadDim = hidden_size |
|
b, t, num_heads, head_dim = audio_encodings_attn_out.shape |
|
audio_encodings_reshaped = audio_encodings_attn_out.reshape(b, t, num_heads * head_dim) |
|
|
|
audio_encodings = self.post(audio_encodings_reshaped) |
|
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) |
|
return audio_encodings_input_to_attn + self.post_norm(audio_encodings) |
|
|
|
|
|
class Gemma3nAudioConformerFeedForward(nn.Module): |
|
def __init__(self, config: Gemma3nAudioConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.register_buffer(\"gradient_clipping\", torch.tensor(self.config.gradient_clipping), persistent=False) |
|
|
|
self.pre_layer_norm = Gemma3nRMSNorm(self.config.hidden_size) |
|
self.ffw_layer_1 = nn.Linear(self.config.hidden_size, self.config.hidden_size * 4, bias=False) |
|
self.ffw_layer_2 = nn.Linear(self.config.hidden_size * 4, self.config.hidden_size, bias=False) |
|
self.post_layer_norm = Gemma3nRMSNorm(self.config.hidden_size) |
|
self.post_layer_scale = torch.tensor(self.config.conf_residual_weight) |
|
|
|
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor: |
|
residual = audio_encodings |
|
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) |
|
audio_encodings = self.pre_layer_norm(audio_encodings) |
|
audio_encodings: torch.Tensor = self.ffw_layer_1(audio_encodings) |
|
audio_encodings = nn.functional.silu(audio_encodings) |
|
audio_encodings: torch.Tensor = self.ffw_layer_2(audio_encodings) |
|
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) |
|
audio_encodings = self.post_layer_norm(audio_encodings) |
|
return residual + (audio_encodings * self.post_layer_scale) |
|
|
|
|
|
class Gemma3nAudioConformerLightConv1d(nn.Module): |
|
def __init__(self, config: Gemma3nAudioConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.pre_layer_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) |
|
self.linear_start = nn.Linear(self.config.hidden_size, self.config.hidden_size * 2, bias=False) |
|
self.depthwise_conv1d = nn.Conv1d( |
|
in_channels=self.config.hidden_size, |
|
out_channels=self.config.hidden_size, |
|
kernel_size=self.config.conf_conv_kernel_size, |
|
stride=1, |
|
padding=0, # Manual causal padding |
|
groups=self.config.hidden_size, # Depthwise |
|
bias=False, |
|
) |
|
self.register_buffer(\"gradient_clipping\", torch.tensor(self.config.gradient_clipping), persistent=False) |
|
self.conv_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) |
|
self.linear_end = nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False) |
|
|
|
self.causal_padding = self.config.conf_conv_kernel_size - 1 |
|
|
|
def forward(self, audio_encodings: torch.Tensor) -> torch.Tensor: |
|
audio_encodings_residual = audio_encodings # Save for residual connection |
|
|
|
audio_encodings = self.pre_layer_norm(audio_encodings) |
|
audio_encodings = self.linear_start(audio_encodings) |
|
audio_encodings = torch.nn.functional.glu(audio_encodings, dim=-1) |
|
# Permute for Conv1d: [B, T, D] -> [B, D, T] |
|
audio_encodings_permuted = audio_encodings.permute(0, 2, 1) |
|
# Apply manual causal padding |
|
audio_encodings_permuted_padded = F.pad(audio_encodings_permuted, (self.causal_padding, 0)) |
|
audio_encodings = self.depthwise_conv1d(audio_encodings_permuted_padded) |
|
# Permute back: [B, D, T_out] -> [B, T_out, D] |
|
audio_encodings = audio_encodings.permute(0, 2, 1) |
|
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) |
|
audio_encodings = self.conv_norm(audio_encodings) |
|
audio_encodings = nn.functional.silu(audio_encodings) |
|
audio_encodings = self.linear_end(audio_encodings) |
|
output = audio_encodings + audio_encodings_residual |
|
return output |
|
|
|
|
|
class Gemma3nAudioConformerBlock(nn.Module): |
|
def __init__(self, config: Gemma3nAudioConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.ffw_layer_start = Gemma3nAudioConformerFeedForward(self.config) |
|
self.attention = Gemma3nAudioConformerAttention(self.config) |
|
self.lconv1d = Gemma3nAudioConformerLightConv1d(self.config) |
|
self.ffw_layer_end = Gemma3nAudioConformerFeedForward(self.config) |
|
self.register_buffer(\"gradient_clipping\", torch.tensor(self.config.gradient_clipping), persistent=False) |
|
self.norm = Gemma3nRMSNorm(self.config.hidden_size) |
|
|
|
def forward(self, audio_encodings: torch.Tensor, audio_mel_mask: torch.BoolTensor) -> torch.Tensor: |
|
audio_encodings = self.ffw_layer_start(audio_encodings) |
|
audio_encodings = self.attention(audio_encodings, audio_mel_mask) |
|
validity_mask_for_lconv = ~audio_mel_mask # True for valid |
|
audio_encodings_for_lconv_input = audio_encodings * validity_mask_for_lconv.unsqueeze(-1).to( |
|
audio_encodings.dtype |
|
) |
|
audio_encodings = self.lconv1d(audio_encodings_for_lconv_input) |
|
|
|
audio_encodings = self.ffw_layer_end(audio_encodings) |
|
audio_encodings = torch.clamp(audio_encodings, -self.gradient_clipping, self.gradient_clipping) |
|
output = self.norm(audio_encodings) |
|
return output |
|
|
|
|
|
class Gemma3nAudioEncoder(PreTrainedModel): |
|
\"\"\"An audio encoder based on the [Universal Speech Model](https://arxiv.org/abs/2303.01037) architecture.\"\"\" |
|
|
|
config_class = Gemma3nAudioConfig |
|
|
|
main_input_name = \"audio_mel\" |
|
|
|
def __init__(self, config: Gemma3nAudioConfig): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.subsample_conv_projection = Gemma3nAudioSubSampleConvProjection(config) |
|
self.conformer = nn.ModuleList( |
|
[Gemma3nAudioConformerBlock(config) for _ in range(config.conf_num_hidden_layers)] |
|
) |
|
|
|
def forward( |
|
self, audio_mel: torch.Tensor, audio_mel_mask: torch.BoolTensor |
|
) -> tuple[torch.Tensor, torch.BoolTensor]: |
|
\"\"\"Encodes a batch of MELs. |
|
|
|
Args: |
|
audio_mel: a torch.Tensor of shape [batch, num_frames, num_channels, |
|
mel_bins]. |
|
|
|
Returns: |
|
audio_encodings: a torch.Tensor of shape |
|
\`[batch_size, self.config.audio_soft_tokens_per_image, |
|
self.config.audio_config.hidden_size]\` |
|
audio_mel_mask: a torch.BoolTensor of shape [batch, num_frames]. |
|
\"\"\" |
|
audio_encodings = self.subsample_conv_projection(audio_mel) # audio_encodings: [B, T_sub, D] |
|
|
|
# Subsample the input audio_mel_mask to match the time dimension of audio_encodings (T_sub) |
|
t_sub = audio_encodings.shape[1] |
|
|
|
time_stride_product = 1 |
|
for stride_pair_idx in range(len(self.config.sscp_conv_stride_size)): |
|
time_stride_product *= self.config.sscp_conv_stride_size[stride_pair_idx][0] |
|
|
|
# Create indices for gathering from the original mask. |
|
# These indices map to original time steps corresponding to the start of each |
|
# receptive field in the subsampled output. |
|
indices = torch.arange(t_sub, device=audio_mel_mask.device) * time_stride_product |
|
indices = torch.clamp(indices, max=audio_mel_mask.shape[1] - 1) # Ensure indices are valid |
|
|
|
# Expand indices for batch compatibility if B > 1 and indices is 1D. |
|
if audio_mel_mask.ndim > 1 and indices.ndim == 1: |
|
indices = indices.unsqueeze(0).expand(audio_mel_mask.shape[0], -1) # [B, T_sub] |
|
elif ( |
|
audio_mel_mask.ndim == indices.ndim |
|
and audio_mel_mask.shape[0] == 1 |
|
and indices.shape[0] != 1 |
|
and t_sub == indices.shape[0] |
|
): |
|
# Handle case where B=1 but indices became [T_sub] instead of [1, T_sub] |
|
indices = indices.unsqueeze(0) |
|
|
|
current_mask = torch.gather(audio_mel_mask, 1, indices) # [B, T_sub] |
|
|
|
for block in self.conformer: |
|
audio_encodings = block(audio_encodings, current_mask) # Pass the processed mask |
|
|
|
if self.config.conf_reduction_factor > 1: |
|
audio_encodings = audio_encodings[:, :: self.config.conf_reduction_factor] |
|
# Reduce the mask as well |
|
current_mask = current_mask[:, :: self.config.conf_reduction_factor] |
|
|
|
audio_encodings = audio_encodings.masked_fill(current_mask.unsqueeze(-1), 0.0) |
|
return audio_encodings, current_mask |
|
|
|
|
|
class Gemma3nTextScaledWordEmbedding(nn.Embedding): |
|
\"\"\" |
|
This module overrides nn.Embeddings\' forward by multiplying with embeddings scale. |
|
\"\"\" |
|
|
|
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: float = 1.0): |
|
super().__init__(num_embeddings, embedding_dim, padding_idx) |
|
self.register_buffer(\"embed_scale\", torch.tensor(embed_scale), persistent=False) |
|
|
|
def forward(self, input_ids: torch.Tensor): |
|
return super().forward(input_ids) * self.embed_scale.to(self.weight.dtype) |
|
|
|
|
|
class Gemma3nTextLaurelBlock(nn.Module): |
|
\"\"\"Learned Augmented Residual Layer\"\"\" |
|
|
|
def __init__(self, config: Gemma3nTextConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.linear_left = nn.Linear(self.config.hidden_size, self.config.laurel_rank, bias=False) |
|
self.linear_right = nn.Linear(self.config.laurel_rank, self.config.hidden_size, bias=False) |
|
self.post_laurel_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
laurel_hidden_states: torch.Tensor = self.linear_left(hidden_states) |
|
laurel_hidden_states: torch.Tensor = self.linear_right(laurel_hidden_states) |
|
normed_laurel_hidden_states = self.post_laurel_norm(laurel_hidden_states) |
|
return hidden_states + normed_laurel_hidden_states |
|
|
|
|
|
class Gemma3nTextMLP(nn.Module): |
|
def __init__(self, config: Gemma3nTextConfig, layer_idx: int = 0): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size[layer_idx] |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_activation] |
|
self.activation_sparsity = config.activation_sparsity_pattern[layer_idx] |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
gate_proj = self.gate_proj(hidden_states) |
|
if self.activation_sparsity > 0.0: |
|
gate_proj = self._gaussian_topk(gate_proj) |
|
activations = self.act_fn(gate_proj) |
|
up_proj = self.up_proj(hidden_states) |
|
down_proj = self.down_proj(activations * up_proj) |
|
return down_proj |
|
|
|
def _gaussian_topk(self, inputs: torch.Tensor) -> torch.Tensor: |
|
target_sparsity_tensor = torch.tensor(self.activation_sparsity, dtype=torch.float32, device=inputs.device) |
|
# normal_dist and std_multiplier are adapted from jax.scipy.stats.norm.ppf(). |
|
# |
|
# References: |
|
# * https://docs.jax.dev/en/latest/_autosummary/jax.scipy.stats.norm.ppf.html |
|
# * https://pytorch.org/docs/stable/distributions.html#torch.distributions.normal.Normal |
|
# * https://pytorch.org/docs/stable/distributions.html#torch.distributions.transformed_distribution.TransformedDistribution.icdf |
|
normal_dist = torch.distributions.normal.Normal(0, 1) |
|
std_multiplier: torch.Tensor = normal_dist.icdf(target_sparsity_tensor) |
|
std_multiplier = std_multiplier.type(inputs.dtype) |
|
inputs_mean = torch.mean(inputs, dim=-1, keepdim=True) |
|
inputs_std = torch.std(inputs, dim=-1, keepdim=True, unbiased=False) |
|
cutoff_x = inputs_mean + inputs_std * std_multiplier |
|
return nn.functional.relu(inputs - cutoff_x) |
|
|
|
|
|
class Gemma3nTextAltUp(nn.Module): |
|
\"\"\"Alternating Updates (AltUp) |
|
|
|
The AltUp module wraps transformer layers. The \`predict\` step modifies the |
|
input to the transformer layer, and the \`correct\` step propagates the output |
|
of the transformer layer to the sparsely updated dimensions. |
|
|
|
See more in the research paper: |
|
|
|
https://proceedings.neurips.cc/paper_files/paper/2023/file/f2059277ac6ce66e7e5543001afa8bb5-Paper-Conference.pdf |
|
\"\"\" |
|
|
|
def __init__(self, config: Gemma3nTextConfig): |
|
super().__init__() |
|
self.config = config |
|
self.correct_output_scale = nn.Parameter(torch.zeros(self.config.hidden_size)) |
|
self.correction_coefs = nn.Linear(self.config.altup_num_inputs, self.config.altup_num_inputs, bias=False) |
|
self.prediction_coefs = nn.Linear(self.config.altup_num_inputs, self.config.altup_num_inputs**2, bias=False) |
|
self.modality_router = nn.Linear(self.config.hidden_size, self.config.altup_num_inputs, bias=False) |
|
self.router_norm = Gemma3nRMSNorm(self.config.hidden_size, eps=self.config.rms_norm_eps) |
|
self.register_buffer(\"router_input_scale\", torch.tensor(self.config.hidden_size**-1.0), persistent=False) |
|
|
|
def compute_router_modalities(self, x: torch.Tensor) -> torch.Tensor: |
|
router_inputs = self.router_norm(x) * self.router_input_scale |
|
routed = self.modality_router(router_inputs) |
|
return torch.tanh(routed.float()).type_as(x) |
|
|
|
def predict(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
\"\"\"Predicts the output of a layer using a trainable map. |
|
|
|
Args: |
|
hidden_states: A 4D tensor of shape \`[num_altup_inputs, batch_size, num_tokens, hidden_size]\` derived by |
|
stacking the input embeddings and preprocessing the last \`num_altup_inputs - 1\` matrices. |
|
|
|
Returns: |
|
A 4D tensor of shape \`[num_altup_inputs, batch_size, num_tokens, hidden_size]\` containing the predictions. |
|
\"\"\" |
|
modalities = self.compute_router_modalities(hidden_states[self.config.altup_active_idx]) |
|
|
|
if self.training and self.config.altup_coef_clip is not None: |
|
self.prediction_coefs.weight.data.clamp_(-self.config.altup_coef_clip, self.config.altup_coef_clip) |
|
|
|
# Project and then transpose all 2D matrices contained so that mulmat gives the correct result |
|
all_coefs: torch.Tensor = ( |
|
self.prediction_coefs(modalities) |
|
.reshape(*modalities.shape[:-1], self.config.altup_num_inputs, self.config.altup_num_inputs) |
|
.permute(0, 1, 3, 2) |
|
) |
|
|
|
# permute hidden_states to [batch_size, num_tokens, hidden_size, altup_num_inputs] |
|
predictions = torch.matmul(hidden_states.permute(1, 2, 3, 0), all_coefs) |
|
predictions = predictions.permute(3, 0, 1, 2) # undo the permute |
|
predictions += hidden_states # add the original input |
|
return predictions.contiguous().type_as(hidden_states) |
|
|
|
def correct(self, predictions: torch.Tensor, activated: torch.Tensor) -> torch.Tensor: |
|
\"\"\"Corrects the predictions relative to the |
|
|
|
Args: |
|
predictions: A 4D tensor of shape \`[num_altup_inputs, batch_size, num_tokens, hidden_size]\` derived by |
|
stacking the input embeddings and preprocessing the last \`num_altup_inputs - 1\` matrices. |
|
activated: A 3D tensor of shape \`[batch_size, num_tokens, hidden_size]\` containing the activated inputs. |
|
|
|
Returns: |
|
A 4D tensor of shape \`[num_altup_inputs, batch_size, num_tokens, hidden_size]\` correcting the original |
|
predictions relative to the activated input embeddings. |
|
\"\"\" |
|
modalities = self.compute_router_modalities(activated) |
|
innovation = activated - predictions[self.config.altup_active_idx] # (batch, num_tokens, hidden_size) |
|
innovation = innovation.repeat(self.config.altup_num_inputs, 1, 1, 1) # Repeat on dim0 to match predictions |
|
|
|
if self.config.altup_coef_clip is not None: |
|
self.correction_coefs.weight.data.clamp_(-self.config.altup_coef_clip, self.config.altup_coef_clip) |
|
|
|
# all_coefs adapted from jax.numpy.einsum(\"...p,pi->...i\", ...) |
|
# Permute to (altup_num_inputs, batch_size, num_tokens) as the last dim is a scalar applied to each altup input |
|
# and expand on dim1 for broadcastability |
|
all_coefs: torch.Tensor = self.correction_coefs(modalities) + 1.0 |
|
all_coefs = all_coefs.permute(2, 0, 1).unsqueeze(-1) |
|
|
|
corrected = torch.mul(innovation, all_coefs) |
|
corrected += predictions # add the original input |
|
return corrected.contiguous().type_as(activated) |
|
|
|
def forward(self, corrected: torch.Tensor) -> torch.Tensor: |
|
\"\"\" |
|
This is only defined as the \`forward\` so that accelerate hooks can move correctly \`correct_output_scale\` |
|
(which is a nn.Parameter, not a Module) between devices when offloading. It is otherwise only used in |
|
\`scale_corrected_output\` |
|
\"\"\" |
|
return (corrected.type_as(self.correct_output_scale) * self.correct_output_scale).type_as(corrected) |
|
|
|
def scale_corrected_output(self, corrected: torch.Tensor) -> torch.Tensor: |
|
\"\"\"Scales the provided 3D tensor of shape [batch_size, num_tokens, hidden_size].\"\"\" |
|
return self.forward(corrected) |
|
|
|
|
|
class Gemma3nTextRotaryEmbedding(nn.Module): |
|
def __init__(self, config: Gemma3nTextConfig, device=None): |
|
super().__init__() |
|
# BC: \"rope_type\" was originally \"type\" |
|
if hasattr(config, \"rope_scaling\") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get(\"rope_type\", config.rope_scaling.get(\"type\")) |
|
else: |
|
self.rope_type = \"default\" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer(\"inv_freq\", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
@torch.no_grad() |
|
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) |
|
def forward(self, x, position_ids): |
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) |
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != \"mps\" else \"cpu\" |
|
with torch.autocast(device_type=device_type, enabled=False): # Force float32 |
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) |
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
cos = emb.cos() * self.attention_scaling |
|
sin = emb.sin() * self.attention_scaling |
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
def rotate_half(x): |
|
\"\"\"Rotates half the hidden dims of the input.\"\"\" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
\"\"\" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
\"\"\" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
dropout: float = 0.0, |
|
scaling: Optional[float] = None, |
|
softcap: Optional[float] = None, |
|
**kwargs, |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
if scaling is None: |
|
scaling = module.head_dim**-0.5 |
|
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
|
if softcap is not None: |
|
attn_weights = attn_weights / softcap |
|
attn_weights = torch.tanh(attn_weights) |
|
attn_weights = attn_weights * softcap |
|
if attention_mask is not None: # no matter the length, we just slice it |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
# upcast attention to fp32 |
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
return attn_output, attn_weights |
|
|
|
|
|
def apply_rotary_pos_emb( |
|
x: torch.Tensor, |
|
cos: torch.Tensor, |
|
sin: torch.Tensor, |
|
position_ids: Optional[torch.Tensor] = None, |
|
unsqueeze_dim: int = 1, |
|
): |
|
\"\"\"Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
x (\`torch.Tensor\`): The tensor to embed. |
|
cos (\`torch.Tensor\`): The cosine part of the rotary embedding. |
|
sin (\`torch.Tensor\`): The sine part of the rotary embedding. |
|
position_ids (\`torch.Tensor\`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (\`int\`, *optional*, defaults to 1): |
|
The \'unsqueeze_dim\' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
\`tuple(torch.Tensor)\` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
\"\"\" |
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
return (x * cos) + (rotate_half(x) * sin) |
|
|
|
|
|
class Gemma3nTextAttention(nn.Module): |
|
\"\"\"Multi-headed attention from \'Attention Is All You Need\' paper\"\"\" |
|
|
|
def __init__(self, config: Gemma3nTextConfig, layer_idx: int): |
|
super().__init__() |
|
self.is_sliding = config.layer_types[layer_idx] == \"sliding_attention\" |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.head_dim = getattr(config, \"head_dim\", config.hidden_size // config.num_attention_heads) |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.attention_dropout = self.config.attention_dropout |
|
self.is_causal = True |
|
|
|
self.q_proj = nn.Linear( |
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.k_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.v_proj = nn.Linear( |
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias |
|
) |
|
self.o_proj = nn.Linear( |
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias |
|
) |
|
self.sliding_window = config.sliding_window if self.is_sliding else None |
|
|
|
self.q_norm = Gemma3nRMSNorm(dim=config.head_dim, eps=config.rms_norm_eps) |
|
self.k_norm = Gemma3nRMSNorm(dim=config.head_dim, eps=config.rms_norm_eps) |
|
self.v_norm = Gemma3nRMSNorm(dim=config.head_dim, eps=config.rms_norm_eps, with_scale=False) |
|
|
|
first_kv_shared_layer_idx = self.config.num_hidden_layers - self.config.num_kv_shared_layers |
|
self.is_kv_shared_layer = layer_idx >= first_kv_shared_layer_idx > 0 |
|
# Find the index of the last sliding or full layer before sharing starts (or None if no sharing) |
|
layer_type = config.layer_types[layer_idx] |
|
self.kv_shared_layer_index = ( |
|
first_kv_shared_layer_idx - 1 - config.layer_types[first_kv_shared_layer_idx - 1 :: -1].index(layer_type) |
|
if self.is_kv_shared_layer |
|
else None |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
past_key_value: Optional[Cache] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
input_shape = hidden_states.shape[:-1] |
|
hidden_shape = (*input_shape, -1, self.config.head_dim) |
|
|
|
cos, sin = position_embeddings |
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape) |
|
query_states = self.q_norm(query_states) |
|
query_states = apply_rotary_pos_emb(query_states, cos, sin, unsqueeze_dim=2) |
|
query_states = query_states.transpose(1, 2) |
|
|
|
if self.is_kv_shared_layer and self.kv_shared_layer_index is not None and past_key_value is not None: |
|
# Device of past layer may be different from current one |
|
indices = cache_position.to(past_key_value.key_cache[self.kv_shared_layer_index].device) |
|
# In this case we need special handling of the slice as the layer is of fixed small size (for full layers, we never go beyond) |
|
if isinstance(past_key_value, HybridCache) and self.is_sliding: |
|
max_length = past_key_value.sliding_window |
|
indices = ( |
|
slice(0, max_length) |
|
if cache_position.shape[0] > max_length |
|
else cache_position.clamp(min=0, max=max_length - 1) |
|
) |
|
|
|
# Device of past layer may be different from current one |
|
key_states = past_key_value.key_cache[self.kv_shared_layer_index][:, :, indices].to(query_states.device) |
|
value_states = past_key_value.value_cache[self.kv_shared_layer_index][:, :, indices].to( |
|
query_states.device |
|
) |
|
else: |
|
key_states = self.k_proj(hidden_states).view(hidden_shape) |
|
key_states = self.k_norm(key_states) |
|
key_states = apply_rotary_pos_emb(key_states, cos, sin, unsqueeze_dim=2) |
|
key_states = key_states.transpose(1, 2) |
|
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape) |
|
value_states = self.v_norm(value_states) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
if past_key_value is not None: |
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache |
|
cache_kwargs = { |
|
\"sin\": sin, |
|
\"cos\": cos, |
|
\"cache_position\": cache_position, |
|
\"sliding_window\": self.sliding_window, |
|
} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
attention_interface: Callable = eager_attention_forward |
|
if self.config._attn_implementation != \"eager\": |
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
dropout=self.attention_dropout if self.training else 0.0, |
|
scaling=1.0, |
|
sliding_window=self.sliding_window, |
|
**kwargs, |
|
) |
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
return attn_output, attn_weights |
|
|
|
|
|
class Gemma3nTextDecoderLayer(GradientCheckpointingLayer): |
|
def __init__(self, config: Gemma3nTextConfig, layer_idx: int): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.layer_idx = layer_idx |
|
self.attention_type = config.layer_types[layer_idx] |
|
self.self_attn = Gemma3nTextAttention(config, layer_idx) |
|
self.mlp = Gemma3nTextMLP(config, layer_idx=layer_idx) |
|
self.input_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps) |
|
self.pre_feedforward_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps) |
|
self.post_feedforward_layernorm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.hidden_size_per_layer_input = config.hidden_size_per_layer_input |
|
self.act_fn = ACT2FN[config.hidden_activation] |
|
|
|
self.altup = Gemma3nTextAltUp(config) |
|
self.laurel = Gemma3nTextLaurelBlock(config) |
|
self.per_layer_input_gate = nn.Linear(self.hidden_size, self.hidden_size_per_layer_input, bias=False) |
|
self.per_layer_projection = nn.Linear(self.hidden_size_per_layer_input, self.hidden_size, bias=False) |
|
self.post_per_layer_input_norm = Gemma3nRMSNorm(self.hidden_size, eps=config.rms_norm_eps) |
|
|
|
@deprecate_kwarg(\"last_cache_position\", version=\"4.53.0\") |
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
position_embeddings_global: torch.Tensor, |
|
position_embeddings_local: torch.Tensor, |
|
per_layer_input: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs, |
|
) -> tuple[torch.Tensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
predictions = self.altup.predict(hidden_states) |
|
active_prediction = predictions[self.config.altup_active_idx] |
|
|
|
active_prediction_normed = self.input_layernorm(active_prediction) |
|
laurel_output = self.laurel(active_prediction_normed) |
|
|
|
# apply global RoPE to non-sliding layer only |
|
if self.self_attn.is_sliding: |
|
position_embeddings = position_embeddings_local |
|
else: |
|
position_embeddings = position_embeddings_global |
|
|
|
attn, self_attn_weights = self.self_attn( |
|
hidden_states=active_prediction_normed, |
|
position_embeddings=position_embeddings, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
attn = self.post_attention_layernorm(attn) |
|
|
|
attn_gated = active_prediction + attn |
|
attn_laurel = (attn_gated + laurel_output) / math.sqrt(2) |
|
|
|
attn_norm = self.pre_feedforward_layernorm(attn_laurel) |
|
attn_ffw = self.mlp(attn_norm) |
|
attn_ffw_norm = self.post_feedforward_layernorm(attn_ffw) |
|
attn_ffw_laurel_gated = attn_laurel + attn_ffw_norm |
|
corrected_predictions = self.altup.correct(predictions, attn_ffw_laurel_gated) |
|
|
|
first_prediction = corrected_predictions[self.config.altup_active_idx].clone() |
|
if self.config.altup_correct_scale: |
|
first_prediction = self.altup.scale_corrected_output(first_prediction) |
|
|
|
# per_layer_input_gate adapted from jax.numpy.einsum(\"btd,dp->btp\", ...) |
|
first_prediction = self.per_layer_input_gate(first_prediction) |
|
first_prediction = self.act_fn(first_prediction) |
|
first_prediction = torch.multiply(first_prediction, per_layer_input) |
|
|
|
# per_layer_projection adapted from jax.numpy.einsum(\"btp,pd->btd\", ...) |
|
first_prediction = self.per_layer_projection(first_prediction) |
|
first_prediction = self.post_per_layer_input_norm(first_prediction) |
|
corrected_predictions[1:] += first_prediction |
|
|
|
outputs = (corrected_predictions,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
@auto_docstring |
|
class Gemma3nPreTrainedModel(PreTrainedModel): |
|
config_class = Gemma3nConfig |
|
base_model_prefix = \"\" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = [\"Gemma3nTextDecoderLayer\"] |
|
_skip_keys_device_placement = [\"past_key_values\"] |
|
_supports_flash_attn_3 = True |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_flex_attn = True |
|
_supports_cache_class = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = True |
|
_supports_attention_backend = True |
|
|
|
def _init_weights(self, module): |
|
# important: this ported version of Gemma2 isn\'t meant for training from scratch - only |
|
# inference and fine-tuning - so the proper init weights code has been removed |
|
std = getattr(self.config, \"initializer_range\", self.config.get_text_config().initializer_range) |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv1d, nn.Conv2d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, Gemma3nRMSNorm): |
|
if module.with_scale: |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, Gemma3nAudioCumulativeGroupNorm): |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, Gemma3nAudioAttention): |
|
module.per_dim_scale.data.zero_() |
|
elif isinstance(module, Gemma3nTextAltUp): |
|
module.correct_output_scale.data.zero_() |
|
|
|
|
|
@auto_docstring(custom_intro=\"The base Gemma 3n language model without a language modeling head.\") |
|
class Gemma3nTextModel(Gemma3nPreTrainedModel): |
|
config_class = Gemma3nTextConfig |
|
|
|
def __init__(self, config: Gemma3nTextConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
# Gemma3n downcasts the below to bfloat16, causing sqrt(3072)=55.4256 to become 55.5. See https://github.com/huggingface/transformers/pull/29402 |
|
self.embed_tokens = Gemma3nTextScaledWordEmbedding( |
|
config.vocab_size, config.hidden_size, self.padding_idx, embed_scale=self.config.hidden_size**0.5 |
|
) |
|
self.layers = nn.ModuleList( |
|
[Gemma3nTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
|
|
self.norm = Gemma3nRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.rotary_emb = Gemma3nTextRotaryEmbedding(config=config) |
|
self.gradient_checkpointing = False |
|
|
|
# TODO (raushan): Fix this after RoPE refactor. For now we hack it by |
|
# reassigning thetas when we want to create a local RoPE layer. Config |
|
# defaults should hold values for global RoPE. |
|
config = copy.deepcopy(config) |
|
config.rope_theta = config.rope_local_base_freq |
|
config.rope_scaling = {\"rope_type\": \"default\"} |
|
self.rotary_emb_local = Gemma3nTextRotaryEmbedding(config=config) |
|
|
|
self.hidden_size = config.hidden_size |
|
self.hidden_size_per_layer_input = config.hidden_size_per_layer_input |
|
|
|
self.embed_tokens_per_layer = Gemma3nTextScaledWordEmbedding( |
|
config.vocab_size_per_layer_input, |
|
config.num_hidden_layers * config.hidden_size_per_layer_input, |
|
self.padding_idx, |
|
embed_scale=config.hidden_size_per_layer_input**0.5, |
|
) |
|
|
|
self.per_layer_model_projection = nn.Linear( |
|
self.hidden_size, |
|
config.num_hidden_layers * config.hidden_size_per_layer_input, |
|
bias=False, |
|
) |
|
|
|
self.per_layer_projection_norm = Gemma3nRMSNorm(config.hidden_size_per_layer_input, eps=config.rms_norm_eps) |
|
|
|
self.altup_projections = nn.ModuleList( |
|
[nn.Linear(self.hidden_size, self.hidden_size, bias=False) for _ in range(1, self.config.altup_num_inputs)] |
|
) |
|
|
|
self.altup_unembed_projections = nn.ModuleList( |
|
[nn.Linear(self.hidden_size, self.hidden_size, bias=False) for _ in range(1, self.config.altup_num_inputs)] |
|
) |
|
|
|
self.register_buffer(\"per_layer_projection_scale\", torch.tensor(self.hidden_size**-0.5), persistent=False) |
|
self.register_buffer(\"per_layer_input_scale\", torch.rsqrt(torch.tensor(2.0)), persistent=False) |
|
|
|
# Initialize weights and apply final processing |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
per_layer_inputs: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
) -> BaseModelOutputWithPast: |
|
r\"\"\" |
|
per_layer_inputs (torch.Tensor, *optional*, defaults to None): |
|
Pre-computed per-layer embeddings. If None, they are derived from input_ids if provided. |
|
\"\"\" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError(\"You must specify exactly one of input_ids or inputs_embeds\") |
|
|
|
if self.gradient_checkpointing and self.training and use_cache: |
|
logger.warning_once( |
|
\"\`use_cache=True\` is incompatible with gradient checkpointing. Setting \`use_cache=False\`.\" |
|
) |
|
use_cache = False |
|
|
|
if input_ids is not None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
per_layer_inputs = self.get_per_layer_inputs(input_ids) |
|
|
|
per_layer_inputs = self.project_per_layer_inputs(inputs_embeds, per_layer_inputs) |
|
|
|
if use_cache and past_key_values is None and not self.training: |
|
past_key_values = DynamicCache() |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, |
|
past_seen_tokens + inputs_embeds.shape[1], |
|
device=inputs_embeds.device, |
|
) |
|
|
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
# It may already have been prepared by e.g. \`generate\` |
|
if not isinstance(causal_mask_mapping := attention_mask, dict): |
|
# Prepare mask arguments |
|
mask_kwargs = { |
|
\"config\": self.config, |
|
\"input_embeds\": inputs_embeds, |
|
\"attention_mask\": attention_mask, |
|
\"cache_position\": cache_position, |
|
\"past_key_values\": past_key_values, |
|
} |
|
# Create the masks |
|
causal_mask_mapping = { |
|
\"full_attention\": create_causal_mask(**mask_kwargs), |
|
\"sliding_attention\": create_sliding_window_causal_mask(**mask_kwargs), |
|
} |
|
|
|
# embed positions |
|
hidden_states_0 = inputs_embeds |
|
|
|
# Initialize RoPE embeddings |
|
position_embeddings_global = self.rotary_emb(hidden_states_0, position_ids) |
|
position_embeddings_local = self.rotary_emb_local(hidden_states_0, position_ids) |
|
|
|
# Expand hidden_states to support per-layer inputs |
|
target_magnitude = torch.mean(hidden_states_0**2, dim=-1, keepdim=True) ** 0.5 |
|
epsilon_tensor = torch.tensor(1e-5) |
|
|
|
temp_hidden_states = [hidden_states_0] |
|
for i in range(1, self.config.altup_num_inputs): |
|
# altup_proj adapted from jax.numpy.einsum(\"btp,pd->btd\", ...) |
|
altup_proj = self.altup_projections[i - 1](hidden_states_0) |
|
current_hidden_state = altup_proj.to(dtype=hidden_states_0.dtype, device=target_magnitude.device) |
|
new_magnitude = torch.mean(current_hidden_state**2, dim=-1, keepdim=True) |
|
new_magnitude = torch.sqrt(torch.maximum(new_magnitude, epsilon_tensor.to(target_magnitude.device))) |
|
current_hidden_state = current_hidden_state * target_magnitude / new_magnitude |
|
temp_hidden_states.append(current_hidden_state) |
|
|
|
hidden_states = torch.stack(temp_hidden_states, dim=0) # [num_altup_inputs, batch, seq_len, hidden_size] |
|
|
|
# decoder layers |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
for decoder_layer in self.layers[: self.config.num_hidden_layers]: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
causal_mask = causal_mask_mapping[decoder_layer.attention_type] |
|
per_layer_input = per_layer_inputs[:, :, decoder_layer.layer_idx, :] |
|
|
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
position_embeddings_global, |
|
position_embeddings_local, |
|
per_layer_input, |
|
attention_mask=causal_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
**flash_attn_kwargs, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
# add hidden states from the last decoder layer (but before reprojecting to stay consistent with layer output) |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
# Per-layer inputs to single output |
|
target_magnitude = torch.mean(hidden_states[0] ** 2, dim=-1, keepdim=True) ** 0.5 |
|
temp_hidden_states = [hidden_states[0]] |
|
for i in range(1, self.config.altup_num_inputs): |
|
# altup_unembed_projections adapted from jax.numpy.einsum(\"btp,pd->btd\", ...) |
|
altup_unemb_proj: torch.Tensor = self.altup_unembed_projections[i - 1](hidden_states[i]) |
|
current_hidden_state = altup_unemb_proj.to(dtype=hidden_states_0.dtype, device=target_magnitude.device) |
|
new_magnitude = torch.mean(current_hidden_state**2, dim=-1, keepdim=True) |
|
new_magnitude = torch.sqrt(torch.maximum(new_magnitude, epsilon_tensor.to(target_magnitude.device))) |
|
current_hidden_state = current_hidden_state * target_magnitude / new_magnitude |
|
temp_hidden_states.append(current_hidden_state) |
|
|
|
hidden_states = torch.stack(temp_hidden_states) |
|
hidden_states = torch.mean(hidden_states, dim=0) |
|
hidden_states = self.norm(hidden_states) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
def get_per_layer_inputs(self, input_ids: torch.LongTensor) -> torch.Tensor: |
|
return self.embed_tokens_per_layer(input_ids).reshape( |
|
*input_ids.shape, |
|
self.config.num_hidden_layers, |
|
self.hidden_size_per_layer_input, |
|
) |
|
|
|
def project_per_layer_inputs( |
|
self, |
|
inputs_embeds: torch.Tensor, |
|
per_layer_inputs: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
per_layer_projection: torch.Tensor = self.per_layer_model_projection(inputs_embeds) |
|
per_layer_projection *= self.per_layer_projection_scale.to( |
|
dtype=inputs_embeds.dtype, device=per_layer_projection.device |
|
) |
|
per_layer_projection = per_layer_projection.reshape( |
|
*inputs_embeds.shape[:-1], |
|
self.config.num_hidden_layers, |
|
self.hidden_size_per_layer_input, |
|
) |
|
per_layer_projection = self.per_layer_projection_norm(per_layer_projection) |
|
|
|
if per_layer_inputs is None: |
|
return per_layer_projection |
|
|
|
if per_layer_projection.shape != per_layer_inputs.shape: |
|
# per-layer inputs are sometimes padded with zeros, slice the relevant embeddings. |
|
per_layer_inputs = per_layer_inputs[..., : self.config.num_hidden_layers, :] |
|
|
|
return (per_layer_projection + per_layer_inputs) * self.per_layer_input_scale.to( |
|
dtype=inputs_embeds.dtype, device=per_layer_projection.device |
|
) |
|
|
|
|
|
@auto_docstring(custom_intro=\"The base Gemma 3n language model with a language modeling head.\") |
|
class Gemma3nForCausalLM(Gemma3nPreTrainedModel, GenerationMixin): |
|
_tied_weights_keys = [\"lm_head.weight\"] |
|
_tp_plan = {\"lm_head\": \"colwise_rep\"} |
|
_pp_plan = {\"lm_head\": ([\"hidden_states\"], [\"logits\"])} |
|
config_class = Gemma3nTextConfig |
|
base_model_prefix = \"model\" |
|
_checkpoint_conversion_mapping = {\"model.language_model\": \"model\"} |
|
|
|
def __init__(self, config: Gemma3nTextConfig): |
|
super().__init__(config) |
|
self.model = Gemma3nTextModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
# Initialize weights and apply final processing |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**loss_kwargs, |
|
) -> CausalLMOutputWithPast: |
|
r\"\"\" |
|
labels (\`torch.LongTensor\` of shape \`(batch_size, sequence_length)\`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in \`[0, ..., |
|
config.vocab_size]\` or -100 (see \`input_ids\` docstring). Tokens with indices set to \`-100\` are ignored |
|
(masked), the loss is only computed for the tokens with labels in \`[0, ..., config.vocab_size]\`. |
|
|
|
Example: |
|
|
|
\`\`\`python |
|
>>> from transformers import AutoTokenizer, Gemma3nForCausalLM |
|
|
|
>>> model = Gemma3nForCausalLM.from_pretrained(\"google/gemma-2-9b\") |
|
>>> tokenizer = AutoTokenizer.from_pretrained(\"google/gemma-2-9b\") |
|
|
|
>>> prompt = \"What is your favorite condiment?\" |
|
>>> inputs = tokenizer(prompt, return_tensors=\"pt\") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
\"What is your favorite condiment?\" |
|
\`\`\`\"\"\" |
|
|
|
if self.training and self.config._attn_implementation != \"eager\": |
|
logger.warning_once( |
|
\"It is strongly recommended to train Gemma3n models with the \`eager\` attention implementation \" |
|
f\"instead of \`{self.config._attn_implementation}\`. Use \`eager\` with \`AutoModelForCausalLM.from_pretrained(\'<path-to-checkpoint>\', attn_implementation=\'eager\')\`.\" |
|
) |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) |
|
outputs: BaseModelOutputWithPast = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
cache_position=cache_position, |
|
**loss_kwargs, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss |
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
if self.config.final_logit_softcapping is not None: |
|
logits = logits / self.config.final_logit_softcapping |
|
logits = torch.tanh(logits) |
|
logits = logits * self.config.final_logit_softcapping |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class Gemma3nMultimodalEmbedder(nn.Module): |
|
\"\"\"Embeds token ids or soft tokens for multimodal content into language model space.\"\"\" |
|
|
|
def __init__( |
|
self, |
|
multimodal_config: Union[Gemma3nAudioConfig, Gemma3nVisionConfig], |
|
text_config: Gemma3nTextConfig, |
|
): |
|
super().__init__() |
|
|
|
self.multimodal_hidden_size = multimodal_config.hidden_size |
|
self.eps = multimodal_config.rms_norm_eps |
|
self.vocab_offset = multimodal_config.vocab_offset |
|
self.vocab_size = multimodal_config.vocab_size |
|
self.text_hidden_size = text_config.hidden_size |
|
|
|
self.embedding = nn.Embedding(self.vocab_size, self.multimodal_hidden_size) |
|
self.hard_embedding_norm = Gemma3nRMSNorm(self.multimodal_hidden_size, eps=self.eps) |
|
self.soft_embedding_norm = Gemma3nRMSNorm(self.multimodal_hidden_size, eps=self.eps) |
|
self.embedding_projection = nn.Linear(self.multimodal_hidden_size, self.text_hidden_size, bias=False) |
|
self.embedding_post_projection_norm = Gemma3nRMSNorm(self.text_hidden_size, eps=self.eps, with_scale=False) |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
\"\"\"Embeds token ids or soft tokens for multimodal content into language model space. |
|
|
|
Args: |
|
input_ids: A torch.LongTensor containing the token ids to embed. Values should be in the range |
|
\`[vocab_offset, vocab_offset + vocab_size)\`. |
|
inputs_embeds: A torch.Tensor containing the soft tokens to embed. |
|
|
|
Returns: |
|
A torch.Tensor of embeddings with shape \`[batch_size, seq_len, self.config.text_config.hidden_size]\`. |
|
\"\"\" |
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError(\"You must specify exactly one of input_ids or inputs_embeds\") |
|
|
|
if inputs_embeds is not None: |
|
emb_norm = self.soft_embedding_norm(inputs_embeds) |
|
else: |
|
hard_emb = self.embedding(input_ids - self.vocab_offset) |
|
emb_norm = self.hard_embedding_norm(hard_emb) |
|
|
|
emb_norm_proj = self.embedding_projection(emb_norm) |
|
return self.embedding_post_projection_norm(emb_norm_proj) |
|
|
|
|
|
@auto_docstring( |
|
custom_intro=\"\"\" |
|
The base Gemma 3n model comprising a vision backbone, an audio backbone, and a language model without a |
|
language modeling head. |
|
\"\"\" |
|
) |
|
class Gemma3nModel(Gemma3nPreTrainedModel): |
|
_checkpoint_conversion_mapping = {} |
|
# we are filtering the logits/labels so we shouldn\'t divide the loss based on num_items_in_batch |
|
accepts_loss_kwargs = False |
|
|
|
def __init__(self, config: Gemma3nConfig): |
|
super().__init__(config) |
|
self.vision_tower = AutoModel.from_config(config=config.vision_config) |
|
self.vocab_size = config.text_config.vocab_size |
|
|
|
language_model = AutoModel.from_config(config=config.text_config) |
|
self.language_model = language_model |
|
|
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
self.vocab_size_per_layer_input = config.text_config.vocab_size_per_layer_input |
|
self.audio_tower = AutoModel.from_config(config.audio_config) |
|
self.embed_vision = Gemma3nMultimodalEmbedder(config.vision_config, config.text_config) |
|
self.embed_audio = Gemma3nMultimodalEmbedder(config.audio_config, config.text_config) |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def set_decoder(self, decoder): |
|
self.language_model = decoder |
|
|
|
def get_decoder(self): |
|
return self.language_model |
|
|
|
def get_image_features(self, pixel_values: torch.Tensor) -> torch.Tensor: |
|
\"\"\" |
|
Projects the last hidden state from the vision model into language model space. |
|
|
|
Args: |
|
pixel_values (\`torch.FloatTensor]\` of shape \`(batch_size, channels, height, width)\`) |
|
The tensors corresponding to the input images. |
|
|
|
Returns: |
|
image_features (\`torch.Tensor\`): Image feature tensor of shape \`(num_images, image_length, embed_dim)\`). |
|
\"\"\" |
|
vision_outputs = self.vision_tower( |
|
pixel_values=pixel_values, do_pooling=False, return_dict=True |
|
).last_hidden_state |
|
# Convert from (batch, channels, height, width) to (batch, height * width, channels) where: |
|
# height == width and height * width == Gemma3nConfig.vision_soft_tokens_per_image. |
|
vision_outputs = vision_outputs.reshape( |
|
vision_outputs.shape[0], |
|
self.config.vision_config.hidden_size, |
|
self.config.vision_soft_tokens_per_image, |
|
).permute(0, 2, 1) |
|
# Normalize and embed the soft tokens into language model space. |
|
vision_outputs *= self.config.vision_config.hidden_size**0.5 |
|
return self.embed_vision(inputs_embeds=vision_outputs) |
|
|
|
@can_return_tuple |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, # text inputs |
|
pixel_values: Optional[torch.FloatTensor] = None, # vision inputs |
|
input_features: Optional[torch.FloatTensor] = None, # audio inputs |
|
attention_mask: Optional[torch.Tensor] = None, |
|
input_features_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
**lm_kwargs, |
|
) -> Gemma3nCausalLMOutputWithPast: |
|
r\"\"\" |
|
labels (\`torch.LongTensor\` of shape \`(batch_size, sequence_length)\`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in \`[0, ..., |
|
config.text_config.vocab_size]\` or -100 (see \`input_ids\` docstring). Tokens with indices set to \`-100\` are ignored |
|
(masked), the loss is only computed for the tokens with labels in \`[0, ..., config.text_config.vocab_size]\`. |
|
|
|
Example: |
|
|
|
\`\`\`python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, Gemma3nForConditionalGeneration |
|
|
|
>>> model = Gemma3nForConditionalGeneration.from_pretrained(\"google/gemma3n2-3b-mix-224\") |
|
>>> processor = AutoProcessor.from_pretrained(\"google/gemma3n2-3b-mix-224\") |
|
|
|
>>> prompt = \"Where is the cat standing?\" |
|
>>> url = \"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg\" |
|
>>> image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
>>> inputs = processor(images=image, text=prompt, return_tensors=\"pt\") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(**inputs,) |
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
\"Where is the cat standing?\nsnow\" |
|
\`\`\` |
|
\"\"\" |
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError(\"You must specify exactly one of input_ids or inputs_embeds\") |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
if input_ids is not None: |
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
|
|
# Prepare per-layer inputs from inputs_ids |
|
per_layer_inputs_mask = torch.logical_and(input_ids >= 0, input_ids < self.vocab_size_per_layer_input) |
|
per_layer_inputs_tokens = torch.where(per_layer_inputs_mask, input_ids, torch.zeros_like(input_ids)) |
|
per_layer_inputs = self.language_model.get_per_layer_inputs(per_layer_inputs_tokens) |
|
|
|
# Handle vision tokens (>= embed_vision.vocab_offset and < embed_audio.vocab_offset) |
|
vision_mask = torch.logical_and( |
|
input_ids >= self.embed_vision.vocab_offset, input_ids < self.embed_audio.vocab_offset |
|
) |
|
dummy_vision_token_id = self.embed_vision.vocab_offset + self.embed_vision.vocab_size - 1 |
|
vision_input_ids = torch.where(vision_mask, input_ids, dummy_vision_token_id).to(inputs_embeds.device) |
|
vision_embeds = self.embed_vision(input_ids=vision_input_ids) |
|
expanded_vision_mask = vision_mask.unsqueeze(-1).expand_as(inputs_embeds) |
|
inputs_embeds = torch.where(expanded_vision_mask, vision_embeds, inputs_embeds) |
|
|
|
# Handle audio tokens (>= embed_audio.vocab_offset) |
|
audio_mask = input_ids >= self.embed_audio.vocab_offset |
|
dummy_audio_token_id = self.embed_audio.vocab_offset + self.embed_audio.vocab_size - 1 |
|
audio_input_ids = torch.where(audio_mask, input_ids, dummy_audio_token_id).to(inputs_embeds.device) |
|
audio_embeds = self.embed_audio(input_ids=audio_input_ids) |
|
expanded_audio_mask = audio_mask.unsqueeze(-1).expand_as(inputs_embeds) |
|
inputs_embeds = torch.where(expanded_audio_mask, audio_embeds, inputs_embeds) |
|
else: |
|
per_layer_inputs = None |
|
|
|
# Merge text and images |
|
if pixel_values is not None: |
|
image_features = self.get_image_features(pixel_values) |
|
|
|
if input_ids is None: |
|
special_image_mask = inputs_embeds == self.get_input_embeddings()( |
|
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
) |
|
else: |
|
special_image_mask = (input_ids == self.config.image_token_id).unsqueeze(-1) |
|
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
|
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel(): |
|
image_tokens_in_text = (special_image_mask).sum(dim=1).sum(dim=0)[0] |
|
raise ValueError( |
|
f\"Number of images does not match number of special image tokens in the input text. \" |
|
f\"Got {image_tokens_in_text} image tokens in the text and \" |
|
f\"{image_features.shape[0] * image_features.shape[1]} tokens from image embeddings.\" |
|
) |
|
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) |
|
|
|
# Merge text and audio |
|
if input_features is not None and input_features_mask is not None: |
|
audio_features, audio_mask = self.get_audio_features(input_features, ~input_features_mask) |
|
|
|
# The Gemma3nProcessor expects all audio will be 30s in length and inserts 188 audio soft tokens into the |
|
# text to account for this. However, the audio preprocessing and encoder do not gurarantee they will |
|
# produce 188 soft tokens; they will produce at most that many tokens, but they may produce fewer tokens |
|
# depending on the length of the longest audio input in the batch. When we encounter this situation, we pad |
|
# the audio feature out to 188 soft tokens with the emebedding of the last token in the embed_audio vocab. |
|
audio_padding_toks = torch.tensor([[self.vocab_size - 1]], dtype=torch.long, device=audio_features.device) |
|
audio_padding_embs = self.embed_audio(input_ids=audio_padding_toks) |
|
audio_features = torch.where(audio_mask.unsqueeze(-1), audio_padding_embs, audio_features) |
|
|
|
audio_batch_size, audio_seq_len, audio_embed_dim = audio_features.shape |
|
extra_padding_tokens = self.config.audio_soft_tokens_per_image - audio_seq_len |
|
extra_padding_features = audio_padding_embs.expand(audio_batch_size, extra_padding_tokens, audio_embed_dim) |
|
|
|
audio_features = torch.cat((audio_features, extra_padding_features), dim=1) |
|
|
|
if input_ids is None: |
|
special_audio_mask = inputs_embeds == self.embed_audio( |
|
input_ids=torch.tensor(self.config.audio_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
) |
|
else: |
|
special_audio_mask = (input_ids == self.config.audio_token_id).unsqueeze(-1) |
|
special_audio_mask = special_audio_mask.expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
|
if not is_torchdynamo_compiling() and inputs_embeds[special_audio_mask].numel() != audio_features.numel(): |
|
audio_tokens_in_text = (special_audio_mask).sum(dim=1).sum(dim=0)[0] |
|
raise ValueError( |
|
f\"Number of audio input features does not match number of special audio tokens in the input text. \" |
|
f\"Got {audio_tokens_in_text} audio tokens in the text and \" |
|
f\"{audio_features.shape[0] * audio_features.shape[1]} tokens from audio embeddings.\" |
|
) |
|
audio_features = audio_features.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(special_audio_mask, audio_features) |
|
|
|
outputs = self.language_model( |
|
input_ids=None, |
|
per_layer_inputs=per_layer_inputs, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=True, |
|
cache_position=cache_position, |
|
**lm_kwargs, |
|
) |
|
|
|
return Gemma3nModelOutputWithPast( |
|
last_hidden_state=outputs.last_hidden_state, |
|
past_key_values=outputs.past_key_values if use_cache else None, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_hidden_states=image_features if pixel_values is not None else None, |
|
audio_hidden_states=audio_features if input_features is not None else None, |
|
) |
|
|
|
def get_audio_features( |
|
self, input_features: torch.Tensor, input_features_mask: torch.Tensor |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
\"\"\" |
|
Projects the last hidden state from the audio encoder into language model space. |
|
|
|
Args: |
|
input_features (\`torch.FloatTensor]\` of shape \`(num_images, seq_length, num_features)\`): |
|
The tensors corresponding to the input audio. |
|
input_features (\`torch.FloatTensor]\` of shape \`(num_images, seq_length)\`): |
|
The attention mask for the input audio. |
|
|
|
Returns: |
|
audio_features (\`torch.Tensor\`): Audio feature tensor of shape \`(num_images, audio_length, embed_dim)\`). |
|
\"\"\" |
|
audio_outputs, audio_mask = self.audio_tower(input_features, input_features_mask) |
|
return self.embed_audio(inputs_embeds=audio_outputs), audio_mask |
|
|
|
|
|
@auto_docstring( |
|
custom_intro=\"\"\" |
|
The base Gemma 3n model comprising a vision backbone, an audio backbone, a language model, and a language modeling |
|
head. |
|
\"\"\" |
|
) |
|
class Gemma3nForConditionalGeneration(Gemma3nPreTrainedModel, GenerationMixin): |
|
_checkpoint_conversion_mapping = {} |
|
_tied_weights_keys = [\"lm_head.weight\"] |
|
base_model_prefix = \"model\" |
|
|
|
def __init__(self, config: Gemma3nConfig): |
|
super().__init__(config) |
|
self.model = Gemma3nModel(config) |
|
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model.set_decoder(decoder) |
|
|
|
def get_decoder(self): |
|
return self.model.get_decoder() |
|
|
|
def get_image_features(self, pixel_values): |
|
return self.model.get_image_features(pixel_values) |
|
|
|
# Make modules available throught conditional class for BC |
|
@property |
|
def language_model(self): |
|
return self.model.language_model |
|
|
|
@property |
|
def vision_tower(self): |
|
return self.model.vision_tower |
|
|
|
@property |
|
def multi_modal_projector(self): |
|
raise AttributeError(\"Use embed_vision instead of multi_modal_projector.\") |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, # text inputs |
|
pixel_values: Optional[torch.FloatTensor] = None, # vision inputs |
|
input_features: Optional[torch.FloatTensor] = None, # audio inputs |
|
attention_mask: Optional[torch.Tensor] = None, |
|
input_features_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
**lm_kwargs, |
|
) -> Gemma3nCausalLMOutputWithPast: |
|
r\"\"\" |
|
input_features (torch.Tensor, *optional*, defaults to None): |
|
The audio inputs to be encoded. |
|
input_features_mask (torch.Tensor, *optional*, defaults to None): |
|
The attention mask for the input audio. |
|
labels (\`torch.LongTensor\` of shape \`(batch_size, sequence_length)\`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in \`[0, ..., |
|
config.text_config.vocab_size]\` or -100 (see \`input_ids\` docstring). Tokens with indices set to \`-100\` are |
|
ignored (masked), the loss is only computed for the tokens with labels in |
|
\`[0, ..., config.text_config.vocab_size]\`. |
|
|
|
Example: |
|
|
|
\`\`\`python |
|
>>> from PIL import Image |
|
>>> import requests |
|
>>> from transformers import AutoProcessor, Gemma3ForConditionalGeneration |
|
|
|
>>> model = Gemma3ForConditionalGeneration.from_pretrained(\"google/gemma-3-4b-it\") |
|
>>> processor = AutoProcessor.from_pretrained(\"google/gemma-3-4b-it\") |
|
|
|
>>> messages = [ |
|
... { |
|
... \"role\": \"system\", |
|
... \"content\": [ |
|
... {\"type\": \"text\", \"text\": \"You are a helpful assistant.\"} |
|
... ] |
|
... }, |
|
... { |
|
... \"role\": \"user\", \"content\": [ |
|
... {\"type\": \"image\", \"url\": \"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg\"}, |
|
... {\"type\": \"text\", \"text\": \"Where is the cat standing?\"}, |
|
... ] |
|
... }, |
|
... ] |
|
|
|
>>> inputs = processor.apply_chat_template( |
|
... messages, |
|
... tokenizer=True, |
|
... return_dict=True, |
|
... return_tensors=\"pt\", |
|
... add_generation_prompt=True |
|
... ) |
|
>>> # Generate |
|
>>> generate_ids = model.generate(**inputs) |
|
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
\"user\nYou are a helpful assistant.\n\n\n\n\n\nWhere is the cat standing?\nmodel\nBased on the image, the cat is standing in a snowy area, likely outdoors. It appears to\" |
|
\`\`\` |
|
\"\"\" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
pixel_values=pixel_values, |
|
input_features=input_features, |
|
attention_mask=attention_mask, |
|
input_features_mask=input_features_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
token_type_ids=token_type_ids, |
|
cache_position=cache_position, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=True, |
|
**lm_kwargs, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss |
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
if (final_logit_softcapping := self.config.get_text_config().final_logit_softcapping) is not None: |
|
logits = logits / final_logit_softcapping |
|
logits = torch.tanh(logits) |
|
logits = logits * final_logit_softcapping |
|
|
|
loss = None |
|
if labels is not None: |
|
# Upcast to float if we need to compute the loss to avoid potential precision issues |
|
logits = logits.float() |
|
shift_logits = logits[..., :-1, :] |
|
shift_labels = labels[..., 1:] |
|
if attention_mask is not None: |
|
# we use the input attention mask to shift the logits and labels, because it is 2D. |
|
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft |
|
shift_attention_mask = attention_mask[:, -shift_logits.shape[1] :].to(logits.device) |
|
shift_logits = shift_logits[shift_attention_mask.to(logits.device) != 0].contiguous() |
|
shift_labels = shift_labels[shift_attention_mask.to(shift_labels.device) != 0].contiguous() |
|
else: |
|
shift_logits = shift_logits.contiguous() |
|
shift_labels = shift_labels.contiguous() |
|
# Flatten the tokens |
|
loss_fct = nn.CrossEntropyLoss() |
|
|
|
flat_logits = shift_logits.view(-1, self.config.text_config.vocab_size) |
|
flat_labels = shift_labels.view(-1).to(shift_logits.device) |
|
loss = loss_fct(flat_logits, flat_labels) |
|
|
|
return Gemma3nCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
image_hidden_states=outputs.image_hidden_states, |
|
audio_hidden_states=outputs.audio_hidden_states, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
pixel_values=None, |
|
input_features=None, |
|
attention_mask=None, |
|
input_features_mask=None, |
|
token_type_ids=None, |
|
use_cache=True, |
|
logits_to_keep=None, |
|
labels=None, |
|
**kwargs, |
|
): |
|
# Overwritten -- custom \`position_ids\` and \`pixel_values\` handling |
|
model_inputs = super().prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
cache_position=cache_position, |
|
use_cache=use_cache, |
|
logits_to_keep=logits_to_keep, |
|
token_type_ids=token_type_ids, |
|
**kwargs, |
|
) |
|
|
|
# If we\'re in cached decoding stage, multimodal inputs should be None because input ids do not contain special |
|
# tokens anymore. Otherwise multimodal inputs should be passed to model. |
|
# NOTE: use_cache=False always needs pixel_values, input_features, and input_features_mask |
|
if cache_position[0] == 0: |
|
model_inputs[\"pixel_values\"] = pixel_values |
|
model_inputs[\"input_features\"] = input_features |
|
model_inputs[\"input_features_mask\"] = input_features_mask |
|
|
|
return model_inputs |
|
|
|
@property |
|
def audio_tower(self): |
|
return self.model.audio_tower |
|
|
|
|
|
__all__ = [ |
|
\"Gemma3nAudioEncoder\", |
|
\"Gemma3nForCausalLM\", |
|
\"Gemma3nForConditionalGeneration\", |
|
\"Gemma3nModel\", |
|
\"Gemma3nPreTrainedModel\", |
|
\"Gemma3nTextModel\", |
|
] |
|
|