Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -12,8 +12,6 @@ from langchain_core.output_parsers import StrOutputParser
|
|
12 |
|
13 |
output_parser = StrOutputParser()
|
14 |
|
15 |
-
# from langchain_community.prompts import PromptTemplate
|
16 |
-
# from langchain.chains import LLMChain
|
17 |
import json
|
18 |
|
19 |
|
@@ -24,35 +22,35 @@ db_name = 'sample_mflix'
|
|
24 |
collection_name = 'embedded_movies'
|
25 |
collection = client[db_name][collection_name]
|
26 |
|
27 |
-
|
28 |
-
vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='vector_index', text_key='plot', embedding_key='plot_embedding')
|
29 |
-
llm = ChatOpenAI()
|
30 |
-
prompt = ChatPromptTemplate.from_messages([
|
31 |
-
("system", "You are a movie recommendation engine please elaborate on movies."),
|
32 |
-
("user", "List of movies: {input}")
|
33 |
-
|
34 |
-
chain = prompt | llm | output_parser
|
35 |
|
36 |
-
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
|
41 |
def get_movies(message, history):
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
|
58 |
demo = gr.ChatInterface(get_movies, examples=["What movies are scary?", "Find me a comedy", "Movies for kids"], title="Movies Atlas Vector Search",description="This small chat uses a similarity search to find relevant movies, it uses an MongoDB Atlase Vector Search read more here: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-tutorial",submit_btn="Search").queue()
|
|
|
12 |
|
13 |
output_parser = StrOutputParser()
|
14 |
|
|
|
|
|
15 |
import json
|
16 |
|
17 |
|
|
|
22 |
collection_name = 'embedded_movies'
|
23 |
collection = client[db_name][collection_name]
|
24 |
|
25 |
+
try:
|
26 |
+
vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='vector_index', text_key='plot', embedding_key='plot_embedding')
|
27 |
+
llm = ChatOpenAI()
|
28 |
+
prompt = ChatPromptTemplate.from_messages([
|
29 |
+
("system", "You are a movie recommendation engine please elaborate on movies."),
|
30 |
+
("user", "List of movies: {input}")
|
31 |
+
])
|
32 |
+
chain = prompt | llm | output_parser
|
33 |
|
34 |
+
except:
|
35 |
+
#If open ai key is wrong
|
36 |
+
print ('Open AI key is wrong')
|
37 |
+
vector_store = None
|
38 |
|
39 |
def get_movies(message, history):
|
40 |
|
41 |
+
try:
|
42 |
+
movies = vector_store.similarity_search(message, 3)
|
43 |
+
return_text = ''
|
44 |
+
for movie in movies:
|
45 |
+
return_text = return_text + 'Title : ' + movie.metadata['title'] + '\n------------\n' + 'Plot: ' + movie.page_content + '\n\n'
|
46 |
+
|
47 |
+
print_llm_text = chain.invoke({"input": return_text})
|
48 |
+
|
49 |
+
for i in range(len(print_llm_text)):
|
50 |
+
time.sleep(0.05)
|
51 |
+
yield "Found: " + "\n\n" + print_llm_text[: i+1]
|
52 |
+
except:
|
53 |
+
yield "Please clone the repo and add your open ai key as well as your MongoDB Atlas UR in the Secret Section of you Space\n OPENAI_API_KEY (your Open AI key) and MONGODB_ATLAS_CLUSTER_URI (0.0.0.0/0 whitelisted instance with Vector index created) \n\n For more information : https://mongodb.com/products/platform/atlas-vector-search"
|
54 |
|
55 |
|
56 |
demo = gr.ChatInterface(get_movies, examples=["What movies are scary?", "Find me a comedy", "Movies for kids"], title="Movies Atlas Vector Search",description="This small chat uses a similarity search to find relevant movies, it uses an MongoDB Atlase Vector Search read more here: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-tutorial",submit_btn="Search").queue()
|