Spaces:
Running
Running
Upload app.py
Browse files
app.py
CHANGED
@@ -20,22 +20,22 @@ collection = client[db_name][collection_name]
|
|
20 |
|
21 |
## Create a vector search index
|
22 |
print ('Creating vector search index')
|
23 |
-
collection.create_search_index(model={"definition": {"mappings":{
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
}}, "name":'default'})
|
33 |
|
34 |
# sleep for minute
|
35 |
-
print ('Waiting for vector index on field "embedding" to be created')
|
36 |
-
time.sleep(60)
|
37 |
|
38 |
-
vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='
|
39 |
|
40 |
def get_movies(message, history):
|
41 |
movies = vector_store.similarity_search(message, 3)
|
|
|
20 |
|
21 |
## Create a vector search index
|
22 |
print ('Creating vector search index')
|
23 |
+
# collection.create_search_index(model={"definition": {"mappings":{
|
24 |
+
# "dynamic":True,
|
25 |
+
# "fields": {
|
26 |
+
# "plot_embedding": {
|
27 |
+
# "type": "knnVector",
|
28 |
+
# "dimensions": 1536,
|
29 |
+
# "similarity": "euclidean"
|
30 |
+
# }
|
31 |
+
# }
|
32 |
+
# }}, "name":'default'})
|
33 |
|
34 |
# sleep for minute
|
35 |
+
# print ('Waiting for vector index on field "embedding" to be created')
|
36 |
+
# time.sleep(60)
|
37 |
|
38 |
+
vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='vector_index', text_key='plot', embedding_key='plot_embedding')
|
39 |
|
40 |
def get_movies(message, history):
|
41 |
movies = vector_store.similarity_search(message, 3)
|