Pash1986 commited on
Commit
ac6abfb
·
verified ·
1 Parent(s): 66b8b79

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -13
app.py CHANGED
@@ -20,22 +20,22 @@ collection = client[db_name][collection_name]
20
 
21
  ## Create a vector search index
22
  print ('Creating vector search index')
23
- collection.create_search_index(model={"definition": {"mappings":{
24
- "dynamic":True,
25
- "fields": {
26
- "plot_embedding": {
27
- "type": "knnVector",
28
- "dimensions": 1536,
29
- "similarity": "euclidean"
30
- }
31
- }
32
- }}, "name":'default'})
33
 
34
  # sleep for minute
35
- print ('Waiting for vector index on field "embedding" to be created')
36
- time.sleep(60)
37
 
38
- vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='default', text_key='plot', embedding_key='plot_embedding')
39
 
40
  def get_movies(message, history):
41
  movies = vector_store.similarity_search(message, 3)
 
20
 
21
  ## Create a vector search index
22
  print ('Creating vector search index')
23
+ # collection.create_search_index(model={"definition": {"mappings":{
24
+ # "dynamic":True,
25
+ # "fields": {
26
+ # "plot_embedding": {
27
+ # "type": "knnVector",
28
+ # "dimensions": 1536,
29
+ # "similarity": "euclidean"
30
+ # }
31
+ # }
32
+ # }}, "name":'default'})
33
 
34
  # sleep for minute
35
+ # print ('Waiting for vector index on field "embedding" to be created')
36
+ # time.sleep(60)
37
 
38
+ vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='vector_index', text_key='plot', embedding_key='plot_embedding')
39
 
40
  def get_movies(message, history):
41
  movies = vector_store.similarity_search(message, 3)