Pash1986 commited on
Commit
ec6ee59
·
verified ·
1 Parent(s): 1bd14b6

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -21
app.py CHANGED
@@ -18,23 +18,6 @@ db_name = 'sample_mflix'
18
  collection_name = 'embedded_movies'
19
  collection = client[db_name][collection_name]
20
 
21
- ## Create a vector search index
22
- print ('Creating vector search index')
23
- # collection.create_search_index(model={"definition": {"mappings":{
24
- # "dynamic":True,
25
- # "fields": {
26
- # "plot_embedding": {
27
- # "type": "knnVector",
28
- # "dimensions": 1536,
29
- # "similarity": "euclidean"
30
- # }
31
- # }
32
- # }}, "name":'default'})
33
-
34
- # sleep for minute
35
- # print ('Waiting for vector index on field "embedding" to be created')
36
- # time.sleep(60)
37
-
38
  try:
39
  vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='vector_index', text_key='plot', embedding_key='plot_embedding')
40
 
@@ -44,9 +27,7 @@ except:
44
  vector_store = None
45
 
46
  def get_movies(message, history):
47
- # Use AsyncIO to run the similarity search in the background
48
- # movies = vector_store.similarity_search(message, 3)
49
- print ('Searching for: ' + message)
50
  try:
51
  movies = vector_store.similarity_search(message, 3)
52
  retrun_text = ''
@@ -60,7 +41,7 @@ def get_movies(message, history):
60
  yield "Please clone the repo and add your open ai key as well as your MongoDB Atlas UR in the Secret Section of you Space\n OPENAI_API_KEY (your Open AI key) and MONGODB_ATLAS_CLUSTER_URI (0.0.0.0/0 whitelisted instance with Vector index created) \n\n For more information : https://mongodb.com/products/platform/atlas-vector-search"
61
 
62
 
63
- demo = gr.ChatInterface(get_movies, examples=["What movies are scary?", "Find me a comedy", "Movies for kids"], title="Movies Atlas Vector Search", submit_btn="Search").queue()
64
 
65
  if __name__ == "__main__":
66
  demo.launch()
 
18
  collection_name = 'embedded_movies'
19
  collection = client[db_name][collection_name]
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  try:
22
  vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='vector_index', text_key='plot', embedding_key='plot_embedding')
23
 
 
27
  vector_store = None
28
 
29
  def get_movies(message, history):
30
+
 
 
31
  try:
32
  movies = vector_store.similarity_search(message, 3)
33
  retrun_text = ''
 
41
  yield "Please clone the repo and add your open ai key as well as your MongoDB Atlas UR in the Secret Section of you Space\n OPENAI_API_KEY (your Open AI key) and MONGODB_ATLAS_CLUSTER_URI (0.0.0.0/0 whitelisted instance with Vector index created) \n\n For more information : https://mongodb.com/products/platform/atlas-vector-search"
42
 
43
 
44
+ demo = gr.ChatInterface(get_movies, examples=["What movies are scary?", "Find me a comedy", "Movies for kids"], title="Movies Atlas Vector Search",description="This small chat uses a similarity search to find relevant movies, it uses an MongoDB Atlase Vector Search read more here: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-tutorial" submit_btn="Search").queue()
45
 
46
  if __name__ == "__main__":
47
  demo.launch()