File size: 5,095 Bytes
26e73e0
 
d580761
26e73e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d580761
26e73e0
 
 
 
 
 
 
d580761
26e73e0
 
 
 
 
 
 
d580761
 
26e73e0
 
 
 
 
 
 
f937f4c
26e73e0
 
 
 
 
f937f4c
 
 
 
 
 
 
 
 
 
d580761
26e73e0
 
 
 
 
d580761
26e73e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d580761
 
 
26e73e0
f937f4c
c63f1bb
26e73e0
d580761
26e73e0
 
 
 
 
 
 
 
f937f4c
26e73e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d580761
26e73e0
 
 
d580761
26e73e0
 
 
d580761
 
 
26e73e0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr
from time import sleep
import json
from pymongo import MongoClient
from bson import ObjectId
from openai import OpenAI
openai_client = OpenAI()
import os

uri = os.environ.get('MONGODB_ATLAS_URI')
client = MongoClient(uri)
db_name = 'whatscooking'
collection_name = 'restaurants'
restaurants_collection = client[db_name][collection_name]
trips_collection = client[db_name]['smart_trips']



def get_restaurants(search, location, meters):

    newTrip, pre_agg = pre_aggregate_meters(location, meters)

    response = openai_client.embeddings.create(
            input=search,
            model="text-embedding-3-small",
            dimensions=256
        )

    vectorQuery = {
        "$vectorSearch": {
            "index" : "vector_index",
            "queryVector": response.data[0].embedding,
            "path" : "embedding",
            "numCandidates": 10,
            "limit": 3,
            "filter": {"searchTrip": newTrip}
        }}
    restaurant_docs = list(trips_collection.aggregate([vectorQuery,
        {"$project": {"_id" : 0, "embedding": 0}}]))

    
    chat_response = openai_client.chat.completions.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "You are a helpful restaurant assistant."},
            { "role": "user", "content": f"Find me the 2 best restaurant and why based on {search} and  {restaurant_docs}. explain trades offs and why I should go to each one. You can mention the third option as a possible alternative."}
        ]
        )

    trips_collection.delete_many({"searchTrip": newTrip})

    first_restaurant = restaurant_docs[0]['restaurant_id']
    second_restaurant = restaurant_docs[1]['restaurant_id']
    third_restaurant = restaurant_docs[2]['restaurant_id']

    if (first_restaurant or second_restaurant or third_restaurant) is None:
        return "No restaurants found", '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':\'\'}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>'
    else:
        restaurant_string = f"\'{first_restaurant}\', \'{second_restaurant}\', \'{third_restaurant}\'"
    iframe = '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':{$in:['  + restaurant_string  + ']}}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>'

    return chat_response.choices[0].message.content, iframe,str(pre_agg), str(vectorQuery)
    

def pre_aggregate_meters(location, meters):

    tripId = ObjectId()
    pre_aggregate_pipeline =  [{
            "$geoNear": {
            "near": location,
            "distanceField": "distance",
            "maxDistance": meters,
            "spherical": True,
            },
        },
        {
            "$addFields": {
                "searchTrip" : tripId,
                "date" : tripId.generation_time
            }
        },
        {
            "$merge": {
                "into": "smart_trips"
            }
        } ]

    result = restaurants_collection.aggregate(pre_aggregate_pipeline);

    print(trips_collection.count_documents({"searchTrip": tripId}));
    sleep(1)

    return tripId, pre_aggregate_pipeline


with gr.Blocks() as demo:
    gr.Markdown(
    """
    # MongoDB's Vector Restaurant planner 
    Start typing below to see the results
    """)
    #gr.HTML(value='<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>')
#    
    gr.Interface(
        get_restaurants,
        [
         
            gr.Textbox(placeholder="What type of dinner are you looking for?"),
         gr.Radio([("work",{
            "type": "Point",
            "coordinates": [
            -73.98527039999999,
            40.7589099
            ]
        }), ("home",{
            "type": "Point",
            "coordinates": [
            -74.013686, 40.701975
            ]
        }), ("park", {
            "type": "Point",
            "coordinates": [ -74.000468,40.720777
            ]
        })], label="Location", info="What location you need?"),
        gr.Slider(minimum=500, maximum=10000, randomize=False, step=5, label="Radius in meters")],
       [gr.Textbox(label="MongoDB Vector Recommendations", placeholder="Results will be displayed here"), "html",
        gr.Code(label="Pre-aggregate pipeline",language="json" ),
        gr.Code(label="Vector Query", language="json")],
        
    )
    #radio.change(location_searched, loc, out)
if __name__ == "__main__":
    demo.launch()