File size: 5,707 Bytes
26e73e0
 
d580761
26e73e0
 
 
 
 
 
 
 
 
c69fe75
be5aa57
26e73e0
 
be5aa57
 
 
 
 
 
 
26e73e0
be5aa57
 
 
 
 
 
 
 
 
26e73e0
 
 
 
 
 
be5aa57
d580761
26e73e0
 
 
 
 
 
 
d580761
be5aa57
 
d580761
26e73e0
 
 
 
199e228
26e73e0
199e228
f937f4c
26e73e0
 
 
be5aa57
26e73e0
be5aa57
 
199e228
 
26e73e0
be5aa57
f937f4c
 
 
199e228
f937f4c
199e228
f937f4c
be5aa57
d580761
26e73e0
 
be5aa57
26e73e0
be5aa57
26e73e0
d580761
26e73e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d580761
 
 
26e73e0
be5aa57
26e73e0
d580761
26e73e0
 
 
 
 
 
be5aa57
 
 
26e73e0
be5aa57
 
26e73e0
 
be5aa57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26e73e0
d580761
 
56e98fa
26e73e0
be5aa57
 
26e73e0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import gradio as gr
from time import sleep
import json
from pymongo import MongoClient
from bson import ObjectId
from openai import OpenAI
openai_client = OpenAI()
import os





## Get the restaurants based on the search and location
def get_restaurants(search, location, meters):

    try:
        uri = os.environ.get('MONGODB_ATLAS_URI')
        client = MongoClient(uri)
        db_name = 'whatscooking'
        collection_name = 'restaurants'
        restaurants_collection = client[db_name][collection_name]
        trips_collection = client[db_name]['smart_trips']

    except:
        print("Error Connecting to the MongoDB Atlas Cluster")
        

    # Pre aggregate restaurants collection based on chosen location and radius, the output is stored into
    # trips_collection
    newTrip, pre_agg = pre_aggregate_meters(restaurants_collection, location, meters)

    ## Get openai embeddings
    response = openai_client.embeddings.create(
            input=search,
            model="text-embedding-3-small",
            dimensions=256
        )

    ## prepare the similarity search on current trip
    vectorQuery = {
        "$vectorSearch": {
            "index" : "vector_index",
            "queryVector": response.data[0].embedding,
            "path" : "embedding",
            "numCandidates": 10,
            "limit": 3,
            "filter": {"searchTrip": newTrip}
        }}

    ## Run the retrieved documents through a RAG system.
    restaurant_docs = list(trips_collection.aggregate([vectorQuery,
        {"$project": {"_id" : 0, "embedding": 0}}]))

    
    chat_response = openai_client.chat.completions.create(
        model="gpt-3.5-turbo-0125",
        messages=[
            {"role": "system", "content": "You are a helpful restaurant assistant. You will get a context if the  context is not relevat to the user query please address that and not provide by default the restaurants as is."},
            { "role": "user", "content": f"Find me the 2 best restaurant and why based on {search} and  {restaurant_docs}. explain trades offs and why I should go to each one. You can mention the third option as a possible alternative."}
        ]
        )

    ## Removed the temporary documents
    trips_collection.delete_many({"searchTrip": newTrip})

    
    if len(restaurant_docs) == 0:
        return "No restaurants found", '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':\'\'}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>', str(pre_agg), str(vectorQuery)

    ## Build the map filter
    first_restaurant = restaurant_docs[0]['restaurant_id']
    second_restaurant = restaurant_docs[1]['restaurant_id']
    third_restaurant = restaurant_docs[2]['restaurant_id']
    restaurant_string = f"'{first_restaurant}', '{second_restaurant}', '{third_restaurant}'"

   
    iframe = '<iframe style="background: #FFFFFF;border: none;border-radius: 2px;box-shadow: 0 2px 10px 0 rgba(70, 76, 79, .2);" width="640" height="480" src="https://charts.mongodb.com/charts-paveldev-wiumf/embed/charts?id=65c24b0c-2215-4e6f-829c-f484dfd8a90c&filter={\'restaurant_id\':{$in:['  + restaurant_string  + ']}}&maxDataAge=3600&theme=light&autoRefresh=true"></iframe>'
    client.close()
    return chat_response.choices[0].message.content, iframe,str(pre_agg), str(vectorQuery)
    

def pre_aggregate_meters(restaurants_collection, location, meters):

    ## Do the geo location preaggregate and assign the search trip id.
    tripId = ObjectId()
    pre_aggregate_pipeline =  [{
            "$geoNear": {
            "near": location,
            "distanceField": "distance",
            "maxDistance": meters,
            "spherical": True,
            },
        },
        {
            "$addFields": {
                "searchTrip" : tripId,
                "date" : tripId.generation_time
            }
        },
        {
            "$merge": {
                "into": "smart_trips"
            }
        } ]

    result = restaurants_collection.aggregate(pre_aggregate_pipeline);

    sleep(3)

    return tripId, pre_aggregate_pipeline


with gr.Blocks() as demo:
    gr.Markdown(
    """
    # MongoDB's Vector Restaurant planner 
    Start typing below to see the results. You can search a specific cuisine for you and choose 3 predefined locations.

    The radius specify the distance from the start search location.
    """)

    # Create the interface
    gr.Interface(
        get_restaurants,
        [gr.Textbox(placeholder="What type of dinner are you looking for?"),
         gr.Radio(choices=[
                ("Timesquare Manhattan", {
                    "type": "Point",
                    "coordinates": [-73.98527039999999, 40.7589099]
                }),
                ("Westside Manhattan", {
                    "type": "Point",
                    "coordinates": [-74.013686, 40.701975]
                }),
                ("Downtown Manhattan", {
                    "type": "Point",
                    "coordinates": [-74.000468, 40.720777]
                })
            ], label="Location", info="What location you need?"),
        gr.Slider(minimum=500, maximum=10000, randomize=False, step=5, label="Radius in meters")],
       [gr.Textbox(label="MongoDB Vector Recommendations", placeholder="Results will be displayed here"), "html",
        gr.Code(label="Pre-aggregate pipeline",language="json" ),
        gr.Code(label="Vector Query", language="json")]
    )

    
if __name__ == "__main__":
    demo.launch()