Spaces:
Paused
Paused
Removed image model
Browse files
app.py
CHANGED
@@ -2,11 +2,10 @@ import streamlit as st
|
|
2 |
from flask.Emotion_spotting_service import _Emotion_spotting_service
|
3 |
from flask.Genre_spotting_service import _Genre_spotting_service
|
4 |
from flask.Beat_tracking_service import _Beat_tracking_service
|
5 |
-
from diffusers import StableDiffusionPipeline
|
6 |
import torch
|
7 |
import os
|
8 |
|
9 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = '4'
|
10 |
emo_list = []
|
11 |
gen_list = []
|
12 |
tempo_list = []
|
@@ -24,11 +23,11 @@ def load_beat_model():
|
|
24 |
beat_service = _Beat_tracking_service()
|
25 |
return beat_service
|
26 |
|
27 |
-
@st.cache_resource
|
28 |
-
def load_image_model():
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
|
34 |
if 'emotion' not in st.session_state:
|
@@ -43,7 +42,7 @@ if 'beat' not in st.session_state:
|
|
43 |
emotion_service = load_emo_model()
|
44 |
genre_service = load_genre_model()
|
45 |
beat_service = load_beat_model()
|
46 |
-
image_service = load_image_model()
|
47 |
|
48 |
st.title("Music2Image webpage")
|
49 |
user_input = st.file_uploader("Upload your wav/mp3 files here", type=["wav","mp3"],key = "file_uploader")
|
@@ -73,7 +72,7 @@ if st.session_state.emotion != None and st.session_state.genre != None and st.se
|
|
73 |
st.caption("Text description of your music file")
|
74 |
text_output = "This piece of music falls under the " + st.session_state.genre[0] + " genre. It is of tempo " + str(int(st.session_state.beat)) + " and evokes a sense of" + st.session_state.emotion + "."
|
75 |
st.text(text_output)
|
76 |
-
if text_output:
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
2 |
from flask.Emotion_spotting_service import _Emotion_spotting_service
|
3 |
from flask.Genre_spotting_service import _Genre_spotting_service
|
4 |
from flask.Beat_tracking_service import _Beat_tracking_service
|
5 |
+
#from diffusers import StableDiffusionPipeline
|
6 |
import torch
|
7 |
import os
|
8 |
|
|
|
9 |
emo_list = []
|
10 |
gen_list = []
|
11 |
tempo_list = []
|
|
|
23 |
beat_service = _Beat_tracking_service()
|
24 |
return beat_service
|
25 |
|
26 |
+
# @st.cache_resource
|
27 |
+
# def load_image_model():
|
28 |
+
# pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",torch_dtype=torch.float16).to("cuda")
|
29 |
+
# pipeline.load_lora_weights("Weights/pytorch_lora_weights.safetensors", weight_name="pytorch_lora_weights.safetensors")
|
30 |
+
# return pipeline
|
31 |
|
32 |
|
33 |
if 'emotion' not in st.session_state:
|
|
|
42 |
emotion_service = load_emo_model()
|
43 |
genre_service = load_genre_model()
|
44 |
beat_service = load_beat_model()
|
45 |
+
# image_service = load_image_model()
|
46 |
|
47 |
st.title("Music2Image webpage")
|
48 |
user_input = st.file_uploader("Upload your wav/mp3 files here", type=["wav","mp3"],key = "file_uploader")
|
|
|
72 |
st.caption("Text description of your music file")
|
73 |
text_output = "This piece of music falls under the " + st.session_state.genre[0] + " genre. It is of tempo " + str(int(st.session_state.beat)) + " and evokes a sense of" + st.session_state.emotion + "."
|
74 |
st.text(text_output)
|
75 |
+
# if text_output:
|
76 |
+
# if st.button("Generate image from text description"):
|
77 |
+
# image = image_service(text_output)
|
78 |
+
# st.image(image)
|