Leo Liu commited on
Commit
1fa4382
·
verified ·
1 Parent(s): 38518af

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -49
app.py CHANGED
@@ -1,50 +1,58 @@
1
- import streamlit as st
2
  from transformers import pipeline
3
- from PIL import Image
4
- import soundfile as sf
5
- import io
6
-
7
- # 1. 加载Pipeline
8
- # - 图像→文本:使用 nlpconnect/vit-gpt2-image-captioning
9
- # - 文本→语音:使用 facebook/mms-tts 或其它 TTS 模型
10
- img_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
11
- text_to_speech = pipeline("text-to-speech", model="facebook/mms-tts")
12
-
13
- st.title("Image-to-Text and Text-to-Speech App (WAV output)")
14
-
15
- # 2. 上传图片
16
- uploaded_image = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
17
- if uploaded_image:
18
- # 显示图片
19
- img = Image.open(uploaded_image)
20
- st.image(img, caption="Uploaded Image", use_container_width=True)
21
-
22
- # 3. 图像 → 文本
23
- text_output = img_to_text(img)[0]["generated_text"]
24
- st.write("### Extracted Text")
25
- st.write(text_output)
26
-
27
- # 4. 文本 → 语音 (TTS)
28
- # text_to_speech(...) 返回一个 dict,包含 "audio" (numpy数组) "sampling_rate"
29
- st.write("### Listen to Speech Output")
30
- speech_output = text_to_speech(text_output)
31
-
32
- # 5. 将返回的音频数组写到内存中的 WAV 文件
33
- audio_array = speech_output["audio"] # numpy array
34
- sample_rate = speech_output["sampling_rate"] # 采样率
35
-
36
- wav_io = io.BytesIO()
37
- # 利用 soundfile 将音频数组写入内存,并指定格式为 WAV
38
- sf.write(wav_io, audio_array, sample_rate, format="WAV")
39
- wav_io.seek(0) # 将指针重置到开头,方便后续读取
40
-
41
- # 6. 使用 st.audio 播放内存中的 WAV
42
- st.audio(wav_io, format="audio/wav")
43
-
44
- # 7. (可选) 提供下载按钮,下载 WAV 文件
45
- st.download_button(
46
- label="Download WAV",
47
- data=wav_io,
48
- file_name="speech.wav",
49
- mime="audio/wav"
50
- )
 
 
 
 
 
 
 
 
 
1
+ # import part
2
  from transformers import pipeline
3
+ import streamlit as st
4
+
5
+ # function part
6
+ # img2text
7
+ def img2text(url):
8
+ image_to_text_model = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
9
+ text = image_to_text_model(url)[0]["generated_text"]
10
+ return text
11
+
12
+ # text2story
13
+ def text2story(text):
14
+ story_text = pipeline("text-generation", model="distilbert/distilgpt2")
15
+ return story_text
16
+
17
+ # text2audio
18
+ def text2audio(story_text):
19
+ audio_data = pipeline("text-to-audio", model="facebook/musicgen-medium")
20
+ return audio_data
21
+
22
+ # main part
23
+ st.set_page_config(page_title="Your Image to Audio Story",
24
+ page_icon="🦜")
25
+ st.header("Turn Your Image to Audio Story")
26
+
27
+ # Upload image here
28
+ uploaded_file = st.file_uploader("Select an Image...")
29
+
30
+ if uploaded_file is not None:
31
+ print(uploaded_file)
32
+ bytes_data = uploaded_file.getvalue()
33
+ with open(uploaded_file.name, "wb") as file:
34
+ file.write(bytes_data)
35
+ st.image(uploaded_file, caption="Uploaded Image",
36
+ use_column_width=True)
37
+
38
+ #Stage 1: Image to Text
39
+ st.text('Processing img2text...')
40
+ scenario = img2text(uploaded_file.name)
41
+ st.write(scenario)
42
+
43
+ #Stage 2: Text to Story
44
+ st.text('Generating a story...')
45
+ story = text2story(scenario)
46
+ st.write(story)
47
+
48
+ #Stage 3: Story to Audio data
49
+ st.text('Generating audio data...')
50
+ audio_data =text2audio(story)
51
+
52
+ # Play button
53
+ if st.button("Play Audio"):
54
+ st.audio(audio_data['audio'],
55
+ format="audio/wav",
56
+ start_time=0,
57
+ sample_rate = audio_data['sampling_rate'])
58
+ st.audio("kids_playing_audio.wav")