Leo Liu commited on
Commit
0e538a8
·
verified ·
1 Parent(s): 241398f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -36
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import streamlit as st
2
- import requests
3
  from io import BytesIO
4
  from PIL import Image
5
  from transformers import pipeline
@@ -14,7 +13,7 @@ def classify_age(image: Image.Image):
14
  Classify the age of a person in an image using the nateraw/vit-age-classifier model.
15
 
16
  Args:
17
- image (PIL.Image): The image to classify.
18
 
19
  Returns:
20
  list: Predictions with labels and corresponding confidence scores.
@@ -24,41 +23,23 @@ def classify_age(image: Image.Image):
24
 
25
  def main():
26
  st.title("Age Classification with ViT Age Classifier")
27
- st.write("This demo uses the `nateraw/vit-age-classifier` model from Hugging Face to predict age categories from facial images.")
28
-
29
- # Let the user choose the input method
30
- input_method = st.radio("Select input method:", ("Image URL", "Upload an Image"))
31
-
32
- image = None
33
 
34
- if input_method == "Image URL":
35
- image_url = st.text_input(
36
- "Enter the Image URL",
37
- "https://github.com/dchen236/FairFace/blob/master/detected_faces/race_Asian_face0.jpg?raw=true"
38
- )
39
- if image_url:
40
- try:
41
- response = requests.get(image_url)
42
- image = Image.open(BytesIO(response.content)).convert("RGB")
43
- st.image(image, caption="Input Image from URL", use_column_width=True)
44
- except Exception as e:
45
- st.error(f"Error loading image from URL: {e}")
46
- else:
47
- uploaded_file = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"])
48
- if uploaded_file is not None:
49
- try:
50
- image = Image.open(uploaded_file).convert("RGB")
51
- st.image(image, caption="Uploaded Image", use_column_width=True)
52
- except Exception as e:
53
- st.error(f"Error processing uploaded image: {e}")
54
 
55
- if image is not None:
56
- if st.button("Classify Age"):
57
- with st.spinner("Classifying..."):
58
- predictions = classify_age(image)
59
- st.write("### Classification Results:")
60
- for pred in predictions:
61
- st.write(f"**Label:** {pred['label']} | **Confidence:** {pred['score']:.2f}")
62
-
63
  if __name__ == "__main__":
64
  main()
 
1
  import streamlit as st
 
2
  from io import BytesIO
3
  from PIL import Image
4
  from transformers import pipeline
 
13
  Classify the age of a person in an image using the nateraw/vit-age-classifier model.
14
 
15
  Args:
16
+ image (PIL.Image.Image): The image to classify.
17
 
18
  Returns:
19
  list: Predictions with labels and corresponding confidence scores.
 
23
 
24
  def main():
25
  st.title("Age Classification with ViT Age Classifier")
26
+ st.write("Upload an image to predict the age category using the `nateraw/vit-age-classifier` model.")
 
 
 
 
 
27
 
28
+ # Upload an image
29
+ uploaded_file = st.file_uploader("Upload an Image", type=["jpg", "jpeg", "png"])
30
+ if uploaded_file is not None:
31
+ try:
32
+ image = Image.open(uploaded_file).convert("RGB")
33
+ st.image(image, caption="Uploaded Image", use_column_width=True)
34
+
35
+ if st.button("Classify Age"):
36
+ with st.spinner("Classifying..."):
37
+ predictions = classify_age(image)
38
+ st.write("### Classification Results:")
39
+ for pred in predictions:
40
+ st.write(f"**Label:** {pred['label']} | **Confidence:** {pred['score']:.2f}")
41
+ except Exception as e:
42
+ st.error(f"Error processing uploaded image: {e}")
 
 
 
 
 
43
 
 
 
 
 
 
 
 
 
44
  if __name__ == "__main__":
45
  main()