Spaces:
Sleeping
Sleeping
File size: 3,965 Bytes
fb59cb8 aa7c58e 7c078a3 166cd36 c410097 895ccaa 01b28b7 166cd36 7c078a3 8cdd8e4 7c078a3 895ccaa c410097 935457c 166cd36 8cdd8e4 aa7c58e c410097 228bfd8 aa7c58e 8cdd8e4 aa7c58e 228bfd8 aa7c58e 935457c bfae66b aa7c58e 935457c 166cd36 aa7c58e 228bfd8 aa7c58e 228bfd8 aa7c58e 935457c bfae66b aa7c58e 228bfd8 c410097 935457c 01b28b7 bbe49e5 166cd36 bbe49e5 aa7c58e 8cdd8e4 01b28b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
#!/usr/bin/env python
from __future__ import annotations
import gradio as gr
import PIL.Image
import zipfile
from genTag import genTag
from cropImage import cropImage
from checkIgnore import is_ignore
from createTagDom import create_tag_dom
def predict(image: PIL.Image.Image, score_threshold: float):
result_threshold = genTag(image, score_threshold)
result_html = ''
for label, prob in result_threshold.items():
result_html += create_tag_dom(label, is_ignore(label, 1), prob)
result_html = '<div>' + result_html + '</div>'
result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 1)}
result_text = '<div id="m5dd_result">' + ', '.join(result_filter.keys()) + '</div>'
crop_image = cropImage(image)
return result_html, result_text, crop_image
def predict_batch(zip_file, score_threshold: float, progress=gr.Progress()):
result = ''
with zipfile.ZipFile(zip_file) as zf:
for file in progress.tqdm(zf.namelist()):
print(file)
if file.endswith(".png") or file.endswith(".jpg"):
image_file = zf.open(file)
image = PIL.Image.open(image_file)
image = image.convert("RGB")
result_threshold = genTag(image, score_threshold)
result_filter = {key: value for key, value in result_threshold.items() if not is_ignore(key, 2)}
tag = ', '.join(result_filter.keys())
result = result + str(file) + '\n' + str(tag) + '\n\n'
return result
with gr.Blocks(css="style.css", js="script.js") as demo:
with gr.Tab(label='Single'):
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(label='Upload a image',
type='pil',
elem_classes='m5dd_image',
sources=["upload", "clipboard"])
score_threshold = gr.Slider(label='Score threshold',
minimum=0,
maximum=1,
step=0.1,
value=0.3)
run_button = gr.Button('Run')
result_text = gr.HTML(value="")
with gr.Accordion("Crop Image"):
crop_image = gr.Image(elem_classes='m5dd_image',
format='jpg',
show_label=False,
container=False)
with gr.Column(scale=2):
result_html = gr.HTML(value="")
with gr.Tab(label='Batch'):
with gr.Row():
with gr.Column(scale=1):
batch_file = gr.File(label="Upload a ZIP file containing images",
file_types=['.zip'])
score_threshold2 = gr.Slider(label='Score threshold',
minimum=0,
maximum=1,
step=0.1,
value=0.3)
run_button2 = gr.Button('Run')
with gr.Column(scale=2):
result_text2 = gr.Textbox(lines=20,
max_lines=20,
label='Result',
show_copy_button=True,
autoscroll=False)
run_button.click(
fn=predict,
inputs=[image, score_threshold],
outputs=[result_html, result_text, crop_image],
api_name='predict',
)
run_button2.click(
fn=predict_batch,
inputs=[batch_file, score_threshold2],
outputs=[result_text2],
api_name='predict_batch',
)
demo.queue().launch()
|