Spaces:
Running
Running
File size: 4,685 Bytes
fb59cb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pathlib
import subprocess
import sys
import urllib
import zipfile
from typing import Callable
# workaround for https://github.com/gradio-app/gradio/issues/483
command = 'pip install -U gradio==2.7.0'
subprocess.call(command.split())
command = 'pip install -r DeepDanbooru/requirements.txt'
subprocess.call(command.split())
sys.path.insert(0, 'DeepDanbooru')
import deepdanbooru as dd
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import tensorflow as tf
TOKEN = os.environ['TOKEN']
ZIP_PATH = 'data.zip'
TAG_PATH = 'tags.txt'
MODEL_PATH = 'model-resnet_custom_v3.h5'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--score-slider-step', type=float, default=0.05)
parser.add_argument('--score-threshold', type=float, default=0.5)
parser.add_argument('--theme', type=str, default='dark-grass')
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
parser.add_argument('--allow-screenshot', action='store_true')
return parser.parse_args()
def download_sample_images() -> list[pathlib.Path]:
image_dir = pathlib.Path('samples')
image_dir.mkdir(exist_ok=True)
dataset_repo = 'hysts/sample-images-TADNE'
n_images = 36
paths = []
for index in range(n_images):
path = huggingface_hub.hf_hub_download(dataset_repo,
f'{index:02d}.jpg',
repo_type='dataset',
cache_dir=image_dir.as_posix(),
use_auth_token=TOKEN)
paths.append(pathlib.Path(path))
return paths
def download_model_data() -> None:
url = 'https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20200915-sgd-e30/deepdanbooru-v3-20200915-sgd-e30.zip'
urllib.request.urlretrieve(url, ZIP_PATH)
with zipfile.ZipFile(ZIP_PATH) as f:
f.extract(TAG_PATH)
f.extract(MODEL_PATH)
def predict(image: PIL.Image.Image, score_threshold: float, model,
labels: list[str]) -> dict[str, float]:
_, height, width, _ = model.input_shape
image = np.asarray(image)
image = tf.image.resize(image,
size=(height, width),
method=tf.image.ResizeMethod.AREA,
preserve_aspect_ratio=True)
image = image.numpy()
image = dd.image.transform_and_pad_image(image, width, height)
image = image / 255.
probs = model.predict(image[None, ...])[0]
probs = probs.astype(float)
res = dict()
for prob, label in zip(probs, labels):
if prob < score_threshold:
continue
res[label] = prob
return res
def main():
gr.close_all()
args = parse_args()
image_paths = download_sample_images()
examples = [[path.as_posix(), args.score_threshold]
for path in image_paths]
zip_path = pathlib.Path(ZIP_PATH)
if not zip_path.exists():
download_model_data()
model = tf.keras.models.load_model(MODEL_PATH)
with open(TAG_PATH) as f:
labels = [line.strip() for line in f.readlines()]
func = functools.partial(predict, model=model, labels=labels)
func = functools.update_wrapper(func, predict)
repo_url = 'https://github.com/KichangKim/DeepDanbooru'
title = 'KichangKim/DeepDanbooru'
description = f'A demo for {repo_url}'
article = None
gr.Interface(
func,
[
gr.inputs.Image(type='pil', label='Input'),
gr.inputs.Slider(0,
1,
step=args.score_slider_step,
default=args.score_threshold,
label='Score Threshold'),
],
gr.outputs.Label(label='Output'),
theme=args.theme,
title=title,
description=description,
article=article,
examples=examples,
allow_screenshot=args.allow_screenshot,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|